• Title/Summary/Keyword: Tensile properties

Search Result 5,774, Processing Time 0.031 seconds

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels (고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향)

  • Lee, Junghoon;Lee, Sunghak;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

Examination of heat resistant tensile properties and molding conditions of green composites composed of kenaf fibers and PLA resin

  • Ben, Goichi;Kihara, Yuichi;Nakamori, Keita;Aoki, Yoshio
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.361-376
    • /
    • 2007
  • Disposing of conventional fiber-reinforced polymers (FRPs) poses an environmentally challenging problem. Disposal of FRPs by combustion discharges carbon dioxide in the air because the resin of FRPs is made of fossil fuel. When they are disposed of in the ground, FRPs remain semipermanently without decomposing. In response to these problems, green composites are now being developed and are extensively studied as a material that produces a lower environmental burden. In this paper, green composites using kenaf fiber yarn bundles and PLA (poly(lactic acid)) are fabricated and their tensile properties are evaluated in the experiment. The tensile Young's modulus of all of the laminations is larger than that of PLA alone and the tensile strength of some laminations is larger than that of PLA alone. In particular, the value of UD composite of $0^{\circ$ shows double the tensile strength of PLA alone. Furthermore, the molding conditions for fabricating with a hot press are investigated and the heat resistant tensile properties of green composites are also reported.

Mechanical and electrical properties of insulating materials at cryogenic temperature (극저온에서의 절연재료의 기계적.전기적 성질)

  • 김상현;마대영;김현희;정순용;김영석
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1033-1039
    • /
    • 1996
  • Electrical and mechanical properties of polymer sheet at cryogenic temperature have been investigated. Tensile stress(and strain at break) in liquid nitrogen(77K) of 79.7MPa(l.2%) and 117.4MPa(2.05%) are evaluated for films of Polypropylene (PP) and Kapton, respectively. Dielectric loss tangent(tan .delta.) of PP and Kapton films is almost independent of the frequency and tensile stress. Also, field strength of PP film at 77K decreases with increasing the tensile stress.

  • PDF

Measurement of Micro-Tensile Properties using ESPI technique (ESPI 기법을 이용한 미소 인장 특성 추정)

  • Huh, Yong-Hak;Kim, Dong-Il;Yoon, Kyung-Jin;Kim, Koung-Suk;Oh, Chung-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.90-97
    • /
    • 2001
  • An electronic speckle pattern interferometry (ESPI) system for measuring tensile properties under micro-tensile testing has been developed. The system consists of an optical system and an image processing system. In the optical system, optical components for measurement of in-plane deformation are arranged on the path of He-Ne laser. In the image processing system, the window-based program for acquiring speckle pattern interferometric image was developed and deformation in a small specimen is continuously evaluated during the test. Using this system, tensile strain of copper foil was measured during tensile testing. Tensile specimen had the thickness and width of 22 and 500 ${\mu}{\textrm}{m}$, respectively. Tensile properties, including the elastic modulus, yielding strength and tensile strength, of the copper were evaluated and also plastic exponent and coefficient in the Ramberg-Osgood relationship were evaluated from the stress-strain curve.

  • PDF

Effects of Gamma Irradiation on Some Mechanical Properties of Novoloid Fibers

  • Ulcay, Y.;Altun, S.
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.156-159
    • /
    • 2004
  • Novoloid fibers have high chemical, flame and thermal resistance; however they have low tensile properties. Effects of gamma irradiation on the tensile properties of novoloid fibers have been investigated. Loop and knot resistance have also been examined. Maximum tenacity of the single fiber increased with an increase of the radiation dose applied. According to the loop and knot tenacity results it is found that brittleness has been also affected by the amount of radiation dose.

Elevated Temperature Tensile Properties of Austempered Ductile Irom (Mo-Ni-Cu계 오스템퍼 구상흑연주철의 고온특성)

  • Yi, Young-Sang;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.323-330
    • /
    • 1991
  • The relationships between the microstructure changes, retained austenite volume and elevated temperature tensile properties of Mo-Ni-Cu ADI corresponding to various austempering temperatures and time were investigated, After the $250^{\circ}C$ tensile test for the test piece austempered at $270^{\circ}C$ the accicular bainite structure was observed blunted under room temperature microscope. In the case of $370^{\circ}C$ austempering, the feathery bainite lath spacing was observed broadened. But after the $450^{\circ}C$ tensile test, bainitic features could not be observed. As the testing temperature increased, retained austenite volume tested at room temperature decreased. Especially, after the $450^{\circ}C$ tensile test retained austenite volume approached nearly to zero. A little higher tensile properties appeared at $250^{\circ}C$ testing than those at room temperature.

  • PDF

Evaluation of the Tensile Properties of Fuel Cladding at High Temperatures Using a Ring Specimen (링 시험편을 이용한 피복관의 고온 인장특성 평가)

  • Bae Bong-Kook;Koo Jae-Mean;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.600-605
    • /
    • 2005
  • In this study, the ring tensile test at high temperature was suggested to evaluate the hoop tensile properties of small tube such as the cladding in the nuclear reactor Using the Arsene's ring model, the ring tensile test was performed and the test data were calibrated. From the result of the ring test with strain gauge and the numerical analysis with 1/8 model, LCRR(load-displacement conversion relationship of ring specimen) was determined. We could obtain the hoop tensile properties by means of applying the LCRR to the calibrated data of the ring tensile test. A few difference was observed in view of the shape of fractured surface and the fracture mechanism between at the high temperature and at the room temperature.

Effect of Mold Materials on the Microstructure and Tensile Properties of Al-Si based Lost Foam Casting Alloy (Al-Si계 소실모형주조합금의 미세조직 및 인장성질에 미치는 주형재료의 영향)

  • Kim, Jeong-Min;Lee, Gang-Rae;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.39 no.5
    • /
    • pp.87-93
    • /
    • 2019
  • The effects of mold materials on the microstructure and tensile properties were investigated to develop a mass production technique of aluminum alloy parts with excellent mechanical properties using a lost foam casting method. The microstructures of the plate-shaped cast alloy showed a tendency to be finer in proportion to the thickness of the plate, and a remarkably fine structure was obtained by applying a steel chill or a ball as a mold material compared to general sand. When a steel ball was used, it was observed that the larger the ball, the finer the cast structure and the better the tensile properties. The microstructure and tensile properties of the cast parts with complex shapes were greatly affected by the gating system, but the positive effects of the steel chill and the steel ball as a mold material were clear.

Effects of Surface Roughness and Microstructure on Tensile Properties of As-Casted Ni-Al Bronze (Ni-Al 청동 주물의 인장 특성에 미치는 표면 조도 및 미세 조직의 영향)

  • Park, Tae-Dong;Kim, Dae-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.316-322
    • /
    • 2000
  • Effect of surface roughness and microstructure of the specimen on tensile properties of Ni-Al bronze casting has been investigated. surface roughnesses of the tensile test specimen of interest are in range of 0.1 to 2.0 ${\mu}m$ in Ra obtained by changing machining conditions. Fracture of the Ni-Al bronze casting initiated at the surface and propagated in a brittle manner during tensile tests. Tensile elongation value of the casting was strongly dependent on the surface roughness range studied, while tensile and yield strengths were almost independent on it. The elongation value was almost constant up to the surface roughness of 1.0 ${\mu}m$ in Ra, and then decreased in a linear manner with an increase in Ra value up to 2.0 ${\mu}m$. However, tensile strength and hardness were strongly dependent on the microstructure, especially ${\alpha}$ phase fraction, and were decreased with increasing ${\alpha}$ phase fraction in microstructure. It is, therefore, recommended that decrease of surface roughness up to 1.0 ${\mu}m$ in Ra, shrinkage porosity and ${\alpha}$ phase are required in order to obtain good tensile properties for Ni-Al bronze casting.

  • PDF

A Study on the Tensile Properties of Polyester Warp Knitted Fabrics (폴리에스테르 경편포의 신장특성에 관한 연구)

  • 김석근;최재우;남은우
    • Textile Coloration and Finishing
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2000
  • The tensile properties of polyester warp knitted fabrics of satin and reverse satin structure with various lengths of underlap were studied. In the range of low tension, the satin warp knitted fabric showed larger tensile energy and elongation in the direction of $0^\circ$ and larger tensile linearity, tensile resilience and initial modulus in $90^\circ$. Meanwhile, reverse satin one showed larger initial moduli in 0$^{\circ}$ and larger the others in $90^\circ$. In the range of high tension, the tendencies of both fabrics in $0^\circ$ direction were almost the same as those in all direction. As the under laps were shorter for both fabrics, tensile linearity, tensile energy and elongation increased, but tensile resilience decreased in all directions. However initial moduli were changed little.

  • PDF