• Title/Summary/Keyword: Tensile propert

Search Result 2, Processing Time 0.014 seconds

A Characteristics of Zn-Al-Cu System Pb-free Solder Alloys for Ultra High Temperature Applications (초고온용 Zn-Al-Cu계 Pb-free 솔더 합금의 특성)

  • Kim Seong-Jun;Na Hye-Seong;Han Tae-Kyo;Lee Bong-Keun;Kang Cung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study is to investigate the characteristics of pb-free $Zn-(3\~6)\%Al-(1\~6)\%Cu$ solder alloys for ultra high temperature(>573K) which applied to air craft, space satellite, automotive, oil, gas well exploration and data logging of geo-thermal wells. Melting range, solderability, electric resistivity, microstructure and mechanical properties were examined with solder alloys casted in Ar gas atmosphere. $Zn-4\%Al-(1\~3)\%Cu,\;Zn-5\%Al-(2\~4)\%Cu\;and\;Zn-6\%Al-(3\~5)\%Cu$ alloys satisfied the optimum melting range of 643 to 673k for ultra high temperature solder. A melting temperature increased with increasing Cu content, but decreased with increasing Al content. The spreadability was improved with increasing hi content. But the content of Cu had no effect on the spreadability. The electric resistivity was lowered with increasing Al and decreasing Cu content. In all Zn-Al-Cu solder alloys, primary dendritic $\varepsilon$ phase(Zn-Cu), dendritic $\eta$ phase(Zn-Cu-Al), $\alpha(Al-Zn)-\eta$ eutectic and eutectoid phase were observed. The addition of Al increased the volume fraction of eutectic and eutectoid phase and it decreased f phases. Also, the addition of Cu increased slightly the volume fraction of e, the eutectic and eutectoid phases. With increasing total content of Al and Cu, a hardness and a tensile strength were linearly increased, but anelongation was linearly decreased.

Manufacture of Artificial stone using Wasts Stone and Powder Sludge (폐석 및 석분 슬러지를 활용한 인조석판재의 제조)

  • 손정수;김병규;김치권
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.4-11
    • /
    • 1995
  • The amounts of waste stone and stone powder sludge that occurred in the quarry and processing plant of s stone plates, have been increased with the development of stone industry. The manufactunng process of 따tificial s stone was studied to reduce the outlet of these wastes and utilIze them as raw materials for architecture, interior decoration and art work. In order to compare the properties of artiflcial stone with those of natural building-stone, the physi$\alpha$II properties of artificial stone such as specific gravity, absorption ratio, elastic wave velocity, compressive s strength, tensile strength, shore hardness, elasticity and Poission's ratio were measured. From the mesaured d data of physical properties, it was found that physical propertIes of artificial stone were controlled by homogeneous m mixing ratio of constituents, molding pressure, and amount of binder. Also, from the thermo-gravimetric analysis, it was found that artIfIcial stone manufactured had a good thermal stability up to $300^{\circ}C$. It was concluded that t the optimum conditions for manufacturing process of artificial stone were $200kg/\textrm{cm}^2$ of molding pressure, 12-15 w weight % of binder amounts.

  • PDF