• Title/Summary/Keyword: Tensile linearity

Search Result 57, Processing Time 0.026 seconds

Mechanical Properties and Surface Morphology of Cotton Fabrics Dyed with Persimmon Juice (감즙 염색에 의한 면직물의 역학적 특성과 표면형태)

  • Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.296-304
    • /
    • 2012
  • For development of dyeability, the cotton fabric was dyed repeatedly with persimmon juice by padding mangle. We evaluated the mechanical properties and hand value by Kawabata Evaluation System, and observed the change of surface morphology. The results obtained from this study were as follows. With the increase of repeating padding times of dyeing, the linearity of load-extension curve and tensile energy per unit length of the cotton fabric were increased, but the tensile resilience of fabric was decreased. The value of shear stiffness and shear hysteresis were increased. Also compression resilience and linearity of compression thickness curve were increased. The cotton fabric dyed with persimmon juice had shown the thickness and weight increase as the number of padding increase. As repeating times of dyeing with persimmon juice were increased, among the 6 hand values, the item of stiffness, anti-drape stiffness, fullness and softness were increased, while flexibility with soft feeling and crispness were greatly decreased. The amount of coated persimmon juice on the surface of the fabric was gradually increased as the padding times of dyeing. And cotton fabrics were dyed evenly with persimmon juice by padding mangle.

Effect of Aftertreatments for Washing on Mechanical Properties of Knitted Fabrics (세탁수처리제가 편성물의 역학적 특성치에 미치는 영향)

  • Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.3 no.2
    • /
    • pp.174-179
    • /
    • 2001
  • This study investigated the effect of aftertreatments such as using the softener or starch on the mechanical properties of knitted fabrics. The mechanical properties of fabrics, hand value(HV) and total hand value(THV) were measured and calculated by the KES-F system. The main results are as follows: The values of tensile energy(WT), coefficient of friction(MIU) and geometrical roughness(SMD) were increased by softener but decreased by starch treatment. However, the values of tensile linearity(LT), bending(B, 2HB), thickness(T) and weight(W) were increased by starch but decreased by softener treatment. Tensile resilience(RT) was increased not only by softener but also by starch treatment. It showed that the levels of FUKURAMI, NUMERI and SOFUTOSA were increased by the treatment of softener and the levels of KOSHI and SHARI were increased by the treatment of starch. Total hand value(THV) was lower in fabric with starch treatment than fabric with none treatment.

  • PDF

On the Change of Fabric Mechanical properties in Ultrasonic Fabric Washing System (호부직물의 초음파 수세에 의한 역학적 특성의 변화)

  • Lee, Choon-Gil;Park, Sung-Diuk;Oh, Bong-Hyo
    • Textile Coloration and Finishing
    • /
    • v.9 no.4
    • /
    • pp.28-38
    • /
    • 1997
  • Peach skin fabrics were washed by the general and ultrasonic washing systems using different conditions. The physical properties of the washed fabrics were estimated. The following results were obtained through experimental data and their analysis. The tensile properties were changed due to fabric running speed and washing methods. The lower the running speed, the higher the extensibility and resilience and the lower the linearity and tensile energy. In the general washing method, the extensibility and resilience had lower values than those of the ultrasonic washing method and the linearity and tensile energy had the higher values than those of the ultrasonic washing system. The bending properties, bending moment and histeresis, were estimated. These values were generally lower in the ultrasonic washing system than those of the general washing system. The faster the washing speed, the higher the value of hysterisis. The shear properties were affected by the fabric running speed and washing methods. Shear stiffness and hysteresis of shear forces increased according to the increase of the fabric running speed. The values were higher in the general washing system than those of the ultrasonic washing system. The compressional energy was affected by the fabric running speed. The higher the fabric speed the higher the compressional energy. The ultrasonic washing system had lower compressional energy than the general washing system. The higher the running speed, the lower the coefficient of friction and geometrical roughness. The values of geometrical roughness were infienced by the removal of the sizing agent. The higher the remaining sizing agent, the higher the fabric weight and the thicker the thickness of fabric.

  • PDF

Probabilistic Structural Safety Assessment Considering the Initial Shape and Non-linearity of Steel Cable-Stayed Bridges (강사장교의 초기형상과 비선형성을 고려한 확률론적 구조안전성 평가)

  • Bang, Myung-Seok;Han, Sung-Ho;Lee, Woo-Sang;Lee, Chin-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In this study, the advanced numerical algorithm is developed which can performed the static and dynamic stochastic finite element analysis by considering the effect of uncertainties included in the member stiffness of steel cable-stayed bridges and seismic load. After conducting the linear and nonlinear initial shape analysis, the advanced numerical algorithm is the assessment tool which can performed structural the response analysis considering the static linearity and non-linearity of before or after induced intial tensile force, and examined the reliability assessment more efficiently. The verification of the developed numerical algorithm is evaluated by analyzing the regression analysis and coefficient of correlation using the direct monte carlo simulation. Also, the dynamic response characteristic and coefficient of variation of the steel cable-stayed bridge is calculated by considering the uncertainty of random variables using the developed numerical algorithm. In addition, the quantitative structural safety of the steel cable-stayed bridges is evaluated by conducting the reliability assessment based upon the dynamic stochastic finite element analysis result.

Mechanical and Electrical Properties of Nonwoven Coated with CNFs/PVDF-HFP Composite (탄소나노섬유/PVDF-HFP 복합재로 코팅된 부직포의 역학적 및 전기적 특성 변화)

  • Lee, Sun-Hee
    • Fashion & Textile Research Journal
    • /
    • v.13 no.2
    • /
    • pp.279-284
    • /
    • 2011
  • In this study, the process of preparation nonwoven with coated carbon nano fibers (CNFs) /poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composite solution is described. The various contents of CNFs/PVDF-HFP composite coated nonwoven were prepared and characterized by morphological, mechanical, and electrical methods. Nonwovens are coated with CNFs/PVDF-HFP composite solution and decreased the pick up ratio with increasing CNFs contents in range from 0% to 16%. In the results of SEM images, it was clear that the CNFs were evenly distributed in coated nonwoven by SEM images, the existence of CNFs in coated nonwoven was confirmed regularly. The mechanical properties of various contents of CNFs/PVDF-HFP coated nonwoven were examined. The tensile linearity and compression linearity increased with increasing CNFs contents. The electrical properties of the CNFs/PVDF-HFP coated nonwoven increased with increasing CNFs contents.

Frictional Sounds and Its Related Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear (스포츠웨어용 투습발수직물의 마찰음과 관련 역학적 성질 비교)

  • 조길수;박미란
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.8-13
    • /
    • 2003
  • Frictional sound of 13 vapor permeable water repellent fabric by sound generator were recorded and analysed through FFT analysis. The frictional Sounds were quantified by calculating total sound pressure(LPT), the level range ΔL and the frequency difference Δf. Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of dry coating. Values for bending rigidity, shear stiffness, surface roughness and compressional recovery of polyurethane fabrics increased compared with the cire finished fabrics. Laminated fabrics had high values of frictional coefficient and low values of surface roughness. LPT showed significant correlation with compressional energy, weight and thickness. (ΔL) was highly correlated with compressional linearity, frictional coefficient, compressional recovery, and (Δf) with tensile linearity, compressional energy, thickness, and weight.

  • PDF

Effect of DP Finishing Conditions on the Mechanical Properties and Hand of Cotton Fabrics (DP 가공조건이 면직물의 역학적 성질과 태에 미치는 영향)

  • 신윤숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.3
    • /
    • pp.440-447
    • /
    • 2000
  • The effects of DP finishing conditions including process technique and finishing agent on the mechanical properties and hand of cotton fabrics were investigated. 100% cotton fabrics were treated with NMA/DMDHEU and NMA/YF using wet-fixation and steam-fixation process. For comparison, conventional pad-dry-cure process was used with DMDHEU. After DP finishing, tensile and compressional resilience increased and bending hysteresis decreased, resulting in the improvement of dimensional stability of cotton fabric. WF and SF process rendered fabrics better shear properties, tensile energy, and compressional linearity and energy than PDC process. However, SF process produced fabrics with higher geometrical roughness than WF process. After DP finishing, primary hand values except Koshi increased, resulting in the increase of total hand value of cotton fabric.

  • PDF

The Variation of Mechanical Properties with Directions of PET High Stretch Fabrics (PET 고신축사 직물의 방향에 따른 역학적 특성의 변화)

  • 김영민;박종범;김주애;조현혹
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.160-167
    • /
    • 2002
  • Stretch fabrics are wide-spread for high performance clothing use with requirements of fitness and adaptability to human's movement. A newly developed 100% PET high stretch fabric has excellent properties with respect to stretch, softness, bulkiness, and apparent volume compared to PET filament fabrics. The 100% PET high stretch fabric shows advantages of a dimensional stability, dye and agent adaptability in dying and finishing process, a property of stretch recovery after washing and lower production cost than that of spandex fabric. KES-FB was used to measure mechanical properties to various directions of the fabric. This study centered on whether the 100% PET high stretch fabric is suitable to quality and shape retention of fabric by testing several properties including tensile, compression, shear, bending and surface characteristic to various measuring directions. Tensile linearity showed maximum value at $0^{\circ}$ in plain and $90^{\circ}$ in twill. Shear Stiffness of plain and twill showed maximum value equally at $45^{\circ}\;and\;135^{\circ}$. Bending rigidity showed maximum value at $0^{\circ}$ in plain and $45^{\circ}$ twill. Mean deviation of MIU showed maximum value at $0^{\circ}\;and\;90^{\circ}$ in plain and $135^{\circ}$ in twill.

A study on the Change of Hand of Chitosan Crosslinked Cotton Fabrics - Effect of Concentration of Epichlorohydrin and Chitosan - (키토산 가교처리된 면직물의 태 변화에 관한 연구 - 에피클로로히드린과 키토산 농도의 영향-)

  • Kim, Min-Ji;Park, Jung-Woo;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.6 no.5
    • /
    • pp.660-666
    • /
    • 2004
  • This article describes the change of hand value of chitosan crosslinked cotton fabrics. The chitosan crosslinked cotton fabrics were manufactured by mercerizing process using epichlorohydrin(ECH) as crosslinkins agent, 2% aqueous acetic acid as a solvent of chitosan and ECH, and 20% aqueous sodium hydroxide as a mercerizing agent and crosslinking catalyst. Cotton fabrics were dipped in the mixed solution of chitosan and ECH, picked up by mangle, mercerized and crosslinked in NaOH solution, and finally wash and dry. Mechanical and physical properties of the chitosan crosslinked fabric were investigated using Kawabata Evaluation System(KES) and other instruments. Tensile energy and tensile strain were decreased with the increase of the concentration of chitosan. Tensile resilience, compression resilience bending rigidity, bending hysteresis, shear stiffness, shear hysteresis, coefficient of friction, geometrical roughness, compression linearity, compressional energy, and thickness were increased with the increase of the concentration of chitosan. On the other hand, bending rigidity, bending hysteresis, coefficient of friction, geometrical roughness, compressional resilience, and thickness were increased with the increase of the concentration of crosslinking agent(epichlorohydrin).

Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm (통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측)

  • Jung, Jin Soo;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.