• Title/Summary/Keyword: Tensile energy

Search Result 1,255, Processing Time 0.035 seconds

Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes

  • Kiraly, Marton;Antok, Daniel Mihaly;Horvath, Laszlone;Hozer, Zoltan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.425-431
    • /
    • 2018
  • Different methods of axial and tangential testing and various sample geometries were investigated, and new test geometries were designed to determine the ultimate tensile strength of zirconium cladding tubes. The finite element method was used to model the tensile tests, and the results of the simulations were evaluated. Axial and tangential tensile tests were performed on as-received and machined fuel cladding tube samples of both E110 and E110G Russian zirconium alloys at room temperature to compare their ultimate tensile strengths and the different sample preparation methods.

CORRELATION BETWEEN THE TENSILE STRENGTH AND CORROSION BEHAVIOR OF HEAT TREATED ZR-1.0NB ALLOY

  • Kim, Tae-Kyu;Choi, Pyung-Sik;Yang, Sung-Ki;Lee, Chong-Tak;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.505-510
    • /
    • 2008
  • The correlation between the tensile strength and corrosion behavior of Zr-1.0wt%Nb alloy heat treated at $480^{\circ}C$ for up to 32 hours was evaluated. The tensile strength at $400^{\circ}C$ was continuously reduced with an increasing heat treatment time, mainly due to a grain growth and a decreased area fraction of the precipitates. However, the corrosion resistance in an aqueous ammonia solution at $360^{\circ}C$ was enhanced, mainly due to the formation of $\beta$-Nb precipitates. It is thus concluded that a longer heat treatment time provides a better corrosion resistance while degrading the tensile strength.

Impact of thermal and chemical treatment on the mechanical properties of E110 and E110G cladding tubes

  • Kiraly, M.;Hozer, Z.;Horvath, M.;Novotny, T.;Perez-Fero, E.;Ver, N.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.518-525
    • /
    • 2019
  • The mechanical and corrosion behavior of the Russian zirconium fuel cladding alloy E110, predominantly used in VVERs, has been investigated for many decades. The recent commercialization of a new, optimized E110 alloy, produced on a sponge zirconium basis, gave the opportunity to compare the mechanical properties of the old and the new E110 fuel claddings. Axial and tangential tensile test experiments were performed with samples from both claddings in the MTA EK. Due to the anisotropy of the cladding tubes, the axial tensile strength was 10-15% higher than the tangential (measured by ring tensile tests). The tensile strength of the new E110G alloy was 11% higher than that of the E110 cladding at room temperature. Some samples underwent chemical treatment - slight oxidation in steam or hydrogenation - or heat treatment - in argon atmosphere at temperatures between 600 and $1000^{\circ}C$. The heat treatment during the oxidation had more significant effect on the tensile strength of the claddings than the oxidation itself, which lowered the tensile strength as the thickness of the metal decreased. The hydrogenation of the cladding samples slightly lowered the tensile strength and the samples but they remained ductile even at room temperature.

Characterization of Tensile Energy Aborption in Paper

  • Park, Jong-Moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.47-56
    • /
    • 1999
  • Tensile energy absorption in paper has long been measured as the area under the load-elongation curve. Little effort has been made to define where and how that energy is used within the paper itself. Characterization of tensile energy absorption in paper is discussed. Multiple small elements within newsprint and kraft sack have been defined and the energy absorbed in those elements are discussed. The tensile profiles of the weak paper, newsprint, and the tough paper, kraft sack, are presented as separate strain profiles, stress profiles, and strain energy density profiles. This allows a complete analysis of the energy absorption of both papers for comparison or contrast.

  • PDF

Effect of serrated grain boundary on stress corrosion cracking of Alloy 600

  • Kim, H.P.;Choi, M.J.;Kim, S.W.;Kim, D.J.;Lim, Y.S.;Hwang, S.S.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1131-1137
    • /
    • 2018
  • The effect of a serrated grain boundary on stress corrosion cracking (SCC) of Alloy 600 was investigated in terms of improvement of SCC resistance. Serrated grain boundaries and straight grain boundaries were obtained by controlled heat treatment. SCC cracks preferentially initiated and grew at grain boundaries normal to the tensile loading axis. Resolved tensile stress normal to the grain boundary was lower in serrated grain boundaries compared to straight grain boundaries. The specimen with serrated grain boundaries showed higher SCC resistance than that with straight grain boundaries due to a lower resolved tensile stress normal to the grain boundary.

Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617

  • Ekaputra, I.M.W.;Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1387-1395
    • /
    • 2016
  • To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of $10^{-3}/s$, $10^{-4}/s$, and $10^{-5}/s$ from $24^{\circ}C$ to $950^{\circ}C$. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress-strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from $200^{\circ}C$ to $700^{\circ}C$. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above $700^{\circ}C$ was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

Tension Stiffening Effects of MMA-Modified Polymer Concrete (MMA 개질 폴리머 콘크리트의 인장증강 효과)

  • Yeon Kyu Seok;Kweon Taek Jeong;Jeong jung Ho;Jin Xing Qi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.304-307
    • /
    • 2004
  • Direct tensile tests were carried out for the tensile members of MMA-modified polymer concrete with different steel kinds and steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, MMA-modified polymer concrete with $1000\;kgf/cm^2$ of compressive strength, steel with $5200\;kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel kinds, diameters and steel content, the strain energy exerted by concrete till the initial crack was $14-15\%$ of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of MMA-modified polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of MMA-modified polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and resign for the polymer concrete structural members.

  • PDF

Tension Stiffening of Reinforced Polymer Concrete Tension member (철근보강 폴리머 콘크리트 인장부재의 인장강성)

  • Yeon, Kyu-Seok;Jin, Nan-Ji;Jo, Kyu-Woo;Kweon, Taek-Jong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.387-390
    • /
    • 2003
  • Direct tensile tests were carried out for the tensile members of steel-reinforced polymer concrete with different steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, polymer concrete with $1000kgf/cm^2$ of compressive strength, steel with $5200kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel diameters and steel content, the strain energy exerted by concrete till the initial crack was 14-15% of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of steel-reinforced polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of steel-reinforced polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and design for the polymer concrete structural members.

  • PDF

Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

  • Kim, Hyun-Jung;Tahk, Young-Wook;Jun, Hyunwoo;Kong, Eui-Hyun;Oh, Jae-Yong;Yim, Jeong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.911-919
    • /
    • 2021
  • In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young's modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 ℃, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 ℃, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.

A Study of the Tensile Properties for Poly(trimethylene terephthalate, PTT) 1×1 Rib Knitted fabrics (Poly(trimethylene terephthalate, PTT) 1×1리브 편성물의 신장특성에 관한 연구)

  • Choi, Jae-Woo;Jang, Boung-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.337-341
    • /
    • 2006
  • The tensile properties of Poly(trimethylene terephthalate, PTT) $1{\times}1Rib$ knitted fabrics were experimentally studies, and the specimens has $1{\times}1$ rib stitched structure which are weft knitted fabrics with various lengths of loop. The $1{\times}1$ rib weft knitted fabric showed larger tensile linearity, tensile energy and tensile resilience in the direction of courses. The tensile properties increased with increasing the loop density in all directions, and perfectly increased with the course directions than the wale directions.

  • PDF