• Title/Summary/Keyword: Tensile cyclic load

Search Result 80, Processing Time 0.032 seconds

The preliminary study of developing strong corrugated box board against aggravated service condition(I) (환경변화에 강한 골판지 개발을 위한 기초연구(제1보))

  • 서영범;오영순
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.1
    • /
    • pp.29-43
    • /
    • 1998
  • This study was to investigate the effect of .compressive load and cyclic humidity(2$0^{\circ}C$, 65% and 90% RH) on the physical and mechanical properties of corrugated board. Corrugated boards in the study were under compressive load and under cyclic humidity, and their properties were compared to those without load. Results were summarized as follows ; 1 Statistically significant correlation was shown between the ring crush of the boards and the compressive strength of cylinder specimen made from the boards. So we could study the compressive behavior of board with cylinder specimen. 2. The boards under the compressive load increased their moisture content and thickness much more than those without load both in constant and in cyclic RH. 3. The compressive and tensile strength of board samples were inversely and closely proportional to the sheet moisture content regardless of their load and humidity history. 4. The moisture content did not show any significant proportionality to the change of burst strength of boards within this experiment. 5. Board reconditioning in standard condition led to the recovery of the strength loss that had occurred under various load and humidity condition. 6. The handsheets prepared from the boards that had experienced compressive load and cyclic humidity, and those with no-load and 65% RH did not show any significant difference in strength properties. No physical damage or load-carrying properties of the wood fiber were observed by the compressive load and cyclic humidity history.

  • PDF

Fatigue Damage of Reinforced Concrete Bridge Columns Subjected to Cyclic Load (반복하중을 받는 철근콘크리트 교각의 피로손상)

  • 김태훈;김운학;신현목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.99-104
    • /
    • 2002
  • This paper presents an analytical prediction of the fatigue damage of reinforced concrete bridge columns subjected to cyclic load. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for fatigue damage of reinforced concrete bridge columns subjected to cyclic load is verified by comparison with reliable experimental results.

  • PDF

Plasticity Model of RC under Cyclic Load (주기하중을 받는 철근 콘크리트 소성 모델)

  • 박홍근;강수민;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.451-454
    • /
    • 1999
  • An existing plasticity model using multiple failure criteria is modified to describe the behavior of reinforced concrete planar members under cyclic load. Multiple failure criteria are used to define both isotropic damage of compressive crushing and anisotropic damage of tensile cracking. A numerical method is developed to define multi-directional and non-orthogonal crack directions. The material model is implemented in the finite element analysis and verified by comparison with existing experiments of reinforced concrete shear wall.

  • PDF

Experimental study on rock-concrete joints under cyclically diametrical compression

  • Chang, Xu;Guo, Tengfei;Lu, Jianyou;Wang, Hui
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.553-564
    • /
    • 2019
  • This paper presents experimental results of rock-concrete bi-material discs under cyclically diametrical compression. It was found that both specimens under cyclical and static loading failed in three typical modes: shear crack, tensile crack and a combined mode of shear and wing crack. The failure modes transited gradually from the shear crack to the tensile one by increasing the interface angle between the interface and the loading direction. The cycle number and peak load increased by increasing the interface angle. The number of cycles and peak load increased with the interface groove depth and groove width, however, decreased with increase in interface groove spacing. The concrete strength can contribute more to the cycle number and peak load for specimens with a higher interface angle. Compared with the discs under static loading, the cyclically loaded discs had a lower peak load but a larger deformation. Finally, the effects of interface angle, interface asperity and concrete strength on the fatigue strength were also discussed.

A Study on Low-Cycle Fatigue Behavior at Elevated Temperature of High Carbon Steel Used For Structural Purpose (構造용高炭素鋼材 의 高溫 低 사이클 피勞擧動 에 關한 硏究)

  • 옹장우;김재훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 1982
  • This study was undertaken to determine tensile properties and low-cycle fatigue behavior of 0.6%C high carbon steel used of structural purposes at temperatures up to 500.deg.C. In the low-cycle fatigue test the upper limit was decided by elongation(i.e. the total strain range), while the lower limit was defined by the load (i.e. zero load). The following results were obtained. Both, the ultimate tensile strength and low-cycle fatigue resistance attain the maximum values near 250.deg.C. Above this temperature the values decrease rapidly as the temperature increases. The low-cycle fatigue resistance decreases whenever there is an increase of the total strain range. Because the hardness of cycle fatigued specimen correlates cyclic hardening and cyclic softening, therefore the hardness of cycle fatigued specimen is smaller than that of the nonfatigued specimen at room temperature and 500.deg.C but much larger than the hardness of the nonfatigued specimen near 250.deg.C.

Modified model of ultimate concrete compression strain (콘크리트의 극한변형률 수정모델)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.81-84
    • /
    • 2008
  • The purposes of this study are to verify a reasonable model of material characteristic and to propose a rational model of reinforcement characteristic considering monotonic and cyclic loading about manufactured reinforcing steel in Korea. Longitudinal reinforcements of the plastic hinge region were behaved tensile deformation and compressional deformation by direction of lateral loading. However Confinement steels were behaved only tensile deformation by lateral loading. Transverse steels were laid the state of tension in the lateral loading of time, and they were laid state that stress is zero when it was removed lateral load. The tests for cyclic tension loading were performed for test variable as yield strength and reinforcement bar sizes. It was estimated that the total strain energy per unit volume was 74 $MJ/m^3$. The modified ultimate concrete compression strain model was proposed based on experimental study of cyclic tension test for manufactured reinforcing steel in Korea.

  • PDF

Time-dependent Deformation Charateristics of Geogrid Using Wide Width Tensile Test (광폭인장시험을 통한 지오그리드의 시간의존적 변형 거동 고찰)

  • Yoo, Chung-Sik;Jeon, Han-Yong;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.71-80
    • /
    • 2008
  • This paper presents the reusults of wide width tensile tests under sustained and cyclic loads with vairous loading rate on geogrids. A seires of modified wide width tensile tests were conducted to investigate the effect of tensile strain rate on the deformation behavior of the geogrids. In addition, residual deformation characteristics of a geogrid under sustained or cyclic tests were also investigated. The results indicated that the residual deformation of a geogrid is strongly related to the viscous behavior of the geogrid, and the residual deformation can be well described by a hyperbolic curve. Also revealed was that residual deformation of a geogrid when subject to sustained or cyclic load should be described with the framework of viscous behavior.

Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites (단섬유보강 금속복합재료의 반복적 변형 및 피로특성)

  • 양유창;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.

Buckling behavior of cold-formed steel lipped channel beam-column members under monotonic and cyclic loadings

  • Yilmaz Yilmaz;Serhat Demir;Ferhan Ozturk
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.435-446
    • /
    • 2024
  • The use of cold-formed steel members is increasing day by day, especially in regions where earthquake effects are intensively experienced. Among cold-formed steel members (CFS), "channel" members are used more than other crosssectional members, especially in buildings or industrial structures. In recent years, several studies have been carried out on the axial load and flexural performance of these members under monotonic loading. In this study, CFS beam-column members were cyclically and monotonically loaded under combined axial load and biaxial bending moments, and their buckling behavior, load bearing capacity, stiffness, ductility, and energy absorption capacity were determined. For this purpose, monotonic and cyclic loading experiments were carried out on 30 CFS channel members at 15 different eccentricities. Then, material properties were determined by axial monotonic tensile and very low cycle fatigue tests for use in numerical studies. From the experimental results, the buckling modes, bearing capacities, ductility, stiffness, and energy absorption capacities of the members were obtained. The characteristics of the members were compared according to the stress state of the lips. According to the data obtained from the displacement transducer placed on the lips and on the back of the web, information about the buckling mode and curvature of the members was obtained. Finally, monotonic, and cyclic loading results were compared to determine the differences in the buckling behavior of the members.

Evaluation on Mechanical Properties of PC and ABS Plastic Materials by Repetitive Impact (PC와 ABS 플라스틱재료의 반복적인 충격하중에 의한 기계적 특성 평가)

  • Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.375-380
    • /
    • 2020
  • In this study, we tried to evaluate the mechanical properties of Polycarbonate(PC) and acrylonitrile-butadiene-styrene(ABS) plastic materials, which are frequently used as parts of home appliances and machinery, when repeated impacts were applied. A repeating impact tester for this research was designed and manufactured to apply repetitive impacts. Two types of plastic were repeatedly impacted under a constant load, and a tensile test was performed on the plastic material that was impacted. The tensile strength of PC plastic materials that received impact more than 2000 times was reduced by about 45 % and elongation was reduced by about 10 % when compared to impact free specimens. On the other hand, in ABS plastic, a reduction of tensile strength of about 20 % was observed at about 2,000 impacted specimen, but at about 20,000 repetitive impacted specimen, a tensile strength decrease of about 65 % was observed. And the elongation was reduced by 10 % due to the cyclic harding behavior of the material.