• Title/Summary/Keyword: Tensile Strength Test

Search Result 2,705, Processing Time 0.03 seconds

Dynamic Tensile Characteristics of the High Strength Steel Sheet for an Auto-body (차체용 고장력 강판의 동적 인장 특성 평가)

  • Kim, Seok-Bong;Huh, Hoon;Shin, Chirl-Soo;Kim, Hyo-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.171-176
    • /
    • 2007
  • An important challenging issue in the automotive industry is the light-weight, safe design and enhancement of crash response of an auto-body structures. These objectives lead to increasing adoption of high strength steel sheet for inner and outer auto-body members. This paper evaluates the dynamic tensile characteristics of high strength steel sheets, HS45R, TRIP60, DP60 and DP100, along the rolling direction and transverse direction. Static tensile tests were carried out at the strain rate of 0.003/sec using the static tensile machine (Instron 5583). Dynamic tensile tests were carried out at the range of strain rate from 0.1/sec to 200/sec using a high speed material testing machine developed. The tensile tests acquire stress-strain relation and strain rate sensitivity of each material. The experimental results show two important aspects for high strength steels: the flow stress increases as strain rate increases; the strain hardening decreases as the tensile stress increases. The experiments also produce interesting results that the elongation does not decrease even when the strain rate increases.

The Effect of Resin Mixture Ratio on Characteristics of Tensile and T-peel Strength in Al/AFRP Laminates (Al/APRP 적층재의 수지혼합비가 인장 및 티-필(T-peel) 강도 특성에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2374-2382
    • /
    • 2002
  • Aluminum alloy/aramid fiber reinforced plastic(Al/AFRP) laminates consists of high strength metal(A15052) and laminated aramid fiber with structural adhesive bond. The mixture ratio effect of epoxy resin curing agent accelerator on the tensile strength and T-peel strength characteristic in Al AFRP laminates were investigated in this study. The epoxy. diglycidylether of bisphenol A(DCEBA), It'as cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test , five kinds of Al/AFRP laminates were named as Al/AFRP(1) and three others of Al/AFRP laminates were named as Al/AFRP(2). The comparison of tensile strength and T-peel strength with variation of resin mixture ratio were studied. Respectively. Al/AFRP(1) and Al/AFRP(2) indicated approximately 6.0 times and 7.0 times more improved maximum tensile strength in comparison with those of monolithic A15052. Al/AFRP(2) indicated approximately 1.5 times more impoved maximum T-peel strengths in comparison with those of Al/AFRP(1). As results. Al/AFRP(2) turned out to have more effective characteristics on the tensile strength and T-peel strength than those of Al/AFRP(1).

Strength and Modulus Relationship of Concrete for Rigid Pavement (포장용 콘크리트의 강도 및 탄성계수 상관관계식)

  • Yang, Sung-Chul;Park, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.205-213
    • /
    • 2007
  • Strength relationships are presented through experimental data from the concrete strength tests in this study. Various strength tests such as the compressive, flexural, and splitting tensile strength and the modulus of elasticity are included. An experimental work was performed to determine the various strength characteristics for various mix designs. Three different coarse aggregates such as granite, limestone, sandstone were used and included were fine aggregates such as natural sand, washed sand and crushed sand. Also included was cement amount as experimental variable. It was confirmed that each strength value with respect to curing time is to follow a typical strength development curve. With this somewhat reliable test results various strength relationships such as flexural strength-compressive strength, splitting tensile strength-compressive strength, modulus of elasticity-compressive strength, splitting tensile strength-flexural strength were analyzed through statistics. Experimental data were well fitted to the 0.5-power relationship of flexural strength and compressive strength which has been commonly accepted. The splitting tensile strength is expected to be best in the linear relationship from the flexural strength data. Finally splitting tensile strength was found to be proportional to the 0.87 power of the cylindrical compressive strength.

  • PDF

Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes

  • Kiraly, Marton;Antok, Daniel Mihaly;Horvath, Laszlone;Hozer, Zoltan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.425-431
    • /
    • 2018
  • Different methods of axial and tangential testing and various sample geometries were investigated, and new test geometries were designed to determine the ultimate tensile strength of zirconium cladding tubes. The finite element method was used to model the tensile tests, and the results of the simulations were evaluated. Axial and tangential tensile tests were performed on as-received and machined fuel cladding tube samples of both E110 and E110G Russian zirconium alloys at room temperature to compare their ultimate tensile strengths and the different sample preparation methods.

A STUDY OF BONDING STRENGTH AND CHANGE OF BRACKET SLOT WIDTH OF CHEMICALLY RECYCLED METAL BRACKETS (화학적(化學的)으로 재생(再生)된 금속(金屬) bracket의 접착(接着) 강도(强度)와 slot폭경(幅徑) 변화(變化)에 관(關)한 연구(硏究))

  • Ko, Young-Sam;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.20 no.2
    • /
    • pp.283-291
    • /
    • 1990
  • The purpose of this study was to measure and compare tensile and shear strength for 4 types of new direct-bonding brackets and same brackets after recycling and to evaluate the change of bracket slot width after recycling. Four types of new direct-bond brackets were bonded to recently extracted human premolar teeth and the tensile and shear strength was measured by Universal Testing Machine. The brackets were recycled by chemical process and the tensile and shear test was repeated. To evaluate the change of the bracket slot width, slot width was measured by the Topcon Universal Measuring Microscope before and after recycling. Following results were obtained: 1. There was no satistically significant difference between the tensile and shear strength of recycled brackets and those of new brackets. 2. In both new and recycled brackets, the tensile and shear strength of perforated base bracket was lower than those of photoetched, foilmesh and contou-lok mesh base brackets. (P<0.01) 3. There was no statistically significant difference in bonding strengths of control group bonded only once and two times. 4. There was no statistically significant difference in the change of the bracket slow width after recycling process. 5. Of the failure, the combination type (58%) in the tensile strength and the tooth adhesive interface (65%) in the shear strength was the most common type.

  • PDF

Tensile Strength of Clear Thin Wood Samples in Relation to the Slope of Grain

  • Cha, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.35-41
    • /
    • 2003
  • The mechanical and physical properties of wood are strongly dependent upon the slope of grain. Specially, tensile strength is more severely affected by the slope of grain. Therefore, tension tests were performed on small thin wood samples made from Pinus radiata with varying the slope of grain. Determining the tensile strength for clear thin wood samples the other variabilities associated with material, size, drying, defects, etc were discarded. Slope of grain was measured by the slope of grain indicator and actual slope of grain was also determined by a protractor. Correlation coefficients between machine measured and actual slope of grain for 40 pieces of 2×20 mm, 300 mm long Pinus radiata were 0.84 for wide face measurement. Results also showed that tensile strength and MOE from stress wave tests decreased with increasing the slope of grain. This study did not establish a relationships for tensile strength and MOE from stress wave with slope of grain. However, the trends of MOEs from stress wave test with both slope of grain are agreed well with Hankinson's equation. Predicted tension strength curve by Hankinson's equation was also agreed well with the experimental data over the range from 0 to 13 degrees for slope of grain.

A Study on Tensile Strength Considering Weight and Printing Time of 3D Infill Patterns using 3D Printing (3D 프린팅을 이용한 3차원 채움 패턴의 중량과 출력시간을 고려한 인장강도 연구)

  • D. H. Na;H. J. Kim;H. J. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.255-267
    • /
    • 2023
  • Recently, 3D printing using a material extrusion method is used in various fields. Since plastic material has lower strength than steel, research to increase the strength is continuously being conducted. This study investigates the lattice structure for additive manufacturing of six 3D infill patterns (octet, quarter cubic, cubic, cubic subdivision, triangles and cross 3D) which consist of tetragons, hexagonal trusses, equilateral triangles and cross shapes. Consequently, in the tensile strength considering the weight and printing time, octet, quarter cubic, cubic and triangles patterns tended to increase linearly as the infill density increased, except for the infill density of 20%. However, the tensile strength/weight performed better than the infill density of 100% when the cubic subdivision pattern had the infill density of 20% and the cross 3D pattern had the infill density of 40%. Considering the weight and printing time, the infill patterns of high tensile strength were octet, quarter cubic, cubic, cubic subdivision, triangles and cross 3D order.

Tensile Behavior of Stud Bolt Connections (스터드 볼트 접합부의 인장 거동에 관한 연구)

  • 이태석;김승훈;서수연;이리형;홍원기
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.321-328
    • /
    • 2001
  • This paper presents the tensile behavior of stud connections installed between reinforced concrete and steel members. Eight specimens are tested to verify the factors influencing the tensile behavior of the connection. Major variables considered in the test are the reinforcement ratios of concrete member and connection details. Test results indicate that the reinforcing bars near stud bolts contribute to the increase of the tensile strength of the member as well as to the reduction of brittle failure. It is shown that C-type or U-type connection has relatively high ductility. From the evaluation on the tensile strength of test results including those of peformed by previous researchers, it was shown CCD (Concrete Capacity Design) method overestimated the strength. In this paper, the reduction factor of 0.75 ø instead of ø is suggested for design purpose of the stud connection.

The Effect of Fiber Volume Fraction on First Cracking Strength and Flexural Tensile Strength of UHPC (섬유혼입률이 UHPC의 초기균열강도 및 휨인장강도에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Ko, Kyung-Taek;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.537-538
    • /
    • 2009
  • To estimate the effect of fiber volume fraction on first cracking strength and flexural tensile strength of UHPC, flexrual tensile tests were carried out within 5 vol.% fiber reinforcement. The test results informed that both first cracking strength and flexural tensile strength improved linearly as fiber volume fraction increased.

  • PDF