• Title/Summary/Keyword: Tensile Strength Test

Search Result 2,705, Processing Time 0.027 seconds

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

A Study on Double - Punch Test for Tensile Strength of Concrete (Double-Punch Test에 의한 콘크리트의 인장강도 시험에 관한 연구)

  • 이우종;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.82-94
    • /
    • 1988
  • The purpose of this study is to introduce the Double Punch test method which is an indirect testing method of tensile strength of concrete, and to compare with the tensile strength of concrete as determined by the split-cylinder test, a practical method for performing the Double Punch test to obtain the tensile strength of concrete is proposed and recommended for general use. In this study, the dimensions of cylindrical specimens used in the Double-Punch test were 15X30cm, 15X15cm, 10${\times}$(20cm, and 5${\times}$l0cm, and in the split-cylinder test were 15${\times}$(30cm, 15${\times}$(15cm, and 10${\times}$(20cm. And the diameters of loading punches used in the Double-Punch test were 1.5cm, 2.5cm, and 3.5 cm. The results obtained from tests are summarized as follows ; 1. In the split-cylinder test, the tensile strength of concrete by the linear elasticity theory is similar to that of plasticity theory. 2. Both split-cylinder test and Double-Punch test, tensile strength of concrete is increased with decreasing specimen size. This tendency is identical when the ratio of specimen diameter to height is 1: 2, but that tendency is quite different when the ratio is 1: 3. In the Double-Punch test, if specimen size is constant, by increasing the punch size, tensile strength of concrete is increased, too. 4. Using a 15 ${\times}$( 15 cm cylinder specimen and 3.5 cm diameter punch in the Double Punch test would give the most uniform and consistent result in tensile strength, and the result showed a gQod correlation with splitting tensile strength from 15 x 30cm specimen. 5. In order to obtain satisfactory results and to nuninuze variability, it is proposed that specimens of 15 cm in diameter and 15 cm in height with two 3.5 cm diameter punches should be used. It seems, therefore, reasonable tt) take f't=0.0024 P(kg / cm$^2$) as a working formula for computing the tensile strength in the Double Punch test for concrete.

  • PDF

Effect of Aspect Ratio in Direct Tensile Strength of Concrete (콘크리트 직접인장강도의 세장비 효과)

  • Hong, Geon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • Although concrete members are not normally designed to resist direct tension, the knowledge of tensile strength is of value in estimating the cracking load. In general, there are three types of test method for tensile strength ; direct tension test, flexural tension test, and splitting tension test. Though direct tensile strength represents the real tensile strength of concrete, direct tension tests are seldom carried out, mainly because it is very difficult to applicate a pure tension force. The purpose of this paper is to investigate the test methods, effect of aspect ratio, and the size effect on the direct tensile strength. Direct tension test, using bonded end plates, follows RILEM and U.S.Bureau of Reclamation. And other test methods follow ASTM provisions. Four kinds of aspect ratio and two kinds of size effect are tested. Same variables are tested by direct tension test and splitting tension test for comparison between the two test methods. Test results show that direct tensile strength of concrete is more affected by aspect ratio and size than other kinds of strength.

Evaluation of direct tensile strength for ultra-high-performance concrete using machine learning algorithms

  • Sanghee Kim;Woo-Young Lim
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.367-378
    • /
    • 2024
  • This study evaluates the direct tensile strength of ultra-high-performance concrete (UHPC) using tests. A total of 45 dogbone-shaped specimens are tested, with the test variables being the fiber volume fraction and notch length. The test results showed that the material properties of UHPC were largely dependent on the fiber volume fraction and compressive strength. When steel fibers with more than 1% fiber volume fraction are mixed in the manufacturing of UHPC, the tensile strength can be more than twice that of plain UHPC. In addition, the incorporation of steel fibers enabled the significant improvement of the initial cracking strength. However, the effect of the notch length on the tensile behavior was insignificant. An assessment of the direct tensile strength is conducted using machine-learning algorithms (ML). For evaluation of the direct tensile strength of UHPC using ML, a total of 98 test data, including 53 data from other research works and 45 data from this experimental program, were collected. In total, 67 data with a 70% confidence interval on a normal distribution curve were selected, with 47 data among 67 used for ML training and 20 data used for ML testing. As a result, the machine-learning algorithm with a steel fiber volume fraction predicted that the tensile strength has an average of 0.98 and the lowest values of regression evaluation metrics among analytical and ML-based models. It is considered that an ML-based model can help to predict a more accurate tensile strength of UHPC.

The Estimation of Dynamic/Impact Strength Characteristics of High Tensile Steel by Dynamic Lethargy Coefficient (동적무기력계수에 의한 고장력강의 동적.충격강도 특성 평가)

  • 송준혁;박정민;채희창;강희용;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-100
    • /
    • 2002
  • The purpose of this paper is presented a rational method of predicting dynamic/impact tensile strength of high tensile steel materials widely used fur structural material of automobiles. It is known that the ultimate strength is related with the loading speed and the Lethargy Coefficient from the tensile test. The Dynamic Lethargy Coefficient is proportional to the disorientation of the molecular structure and indicates the magnitude of defects resulting from the probability of breaking the bonds responsible for its strength. The coefficient is obtained from the simple tensile test such as failure time and stresses at fracture. These factors not only affect the static strength but also have a great influence on the dynamic/impact characteristics of the joist and the adjacent structures. This strength is used to analyze the failure life prediction of mechanical system by virtue of its material fracture. The impact tensile test is performed to evaluate the life parameters due to loading speed with the proposed method. Also the evaluation of the dynamic/impact effect on the material tensile strength characteristics is compared with the result of Campbell-Cooper equation to verify the proposed method.

Tensile strength of unidirectional CFRP laminate under high strain rate

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.167-180
    • /
    • 2007
  • The tensile strength of unidirectional carbon fiber reinforced plastics under a high strain rate was experimentally investigated. A high-strain-rate test was performed using the tension-type split Hopkinson bar technique. In order to obtain the tensile stress-strain relations, a special fixture was used for the impact tensile specimen. The experimental results demonstrated that the tensile modulus and strength in the longitudinal direction are independent of the strain rate. In contrast, the tensile properties in the transverse direction and the shear properties increase with the strain rate. Moreover, it was observed that the strain-rate dependence of the shear strength is much stronger than that of the transverse strength. The tensile strength of off-axis specimens was measured using an oblique tab, and the experimental results were compared with the tensile strength predicted based on the Tsai-Hill failure criterion. It was concluded that the tensile strength can be characterized quite well using the above failure criterion under dynamic loading conditions.

Characterization of Tensile Strength of Anisotropic Rock Using the Indirect Tensile Strength Test (간접인장강도시험을 통한 이방성 암석의 인장강도 특성)

  • 김영수;정성관;최정호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.133-141
    • /
    • 2002
  • Isotropic rock and anisotropic rock have different tensile strength which has the greatest influence on rock failure. In this study, elastic modulus of anisotropic rock is obtained through uniaxial compression test, and tensile strength and tension failure behavior are analyzed through indirect tensile strength test. Stress concentration factor of a specimen at the center is obtained from anisotropic elastic modulus and strain by indirect tensile strength test. Theoretical solutions for tensile strength of isotropic and anisotropic rock are compared. Stress concentration factor of anisotropic rock is either higher or lower than isotropic rock depending on the inclination angle of bedding plane. The use of stress concentration factor of isotropic rock resulted in overestimation or underestimation of tensile strength.

A Study on Bond Strength between Fiber Sheet and Concrete for Concrete Surface Preparation and Heating Condition (콘크리트 표면처리와 가열조건에 따른 섬유쉬트와 콘크리트의 부착강도에 관한 연구)

  • Ahn, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.201-207
    • /
    • 2002
  • An advanced fiber sheet has been widely used for strengthening of the concrete structures due to its excellent properties such as high strength and light weight. Bond strength is very important in strengthening the concrete structures using an advanced fiber sheet. This research examines the bond behavior between fiber sheet and concrete, investigates the bond strength by the direct pull-out test and the tensile-shear test. To obtain the tensile-shear strength a double-face shear type bond test is conducted. The primary test variables are the types of concrete surface roughness (disk-grinding/chipping) and retrofitting methods (bonding/injection). Thirty specimens were tested to evaluate the bond strength. It is shown that the average bond strength between fiber sheet and concrete by the direct pull-out test and the tensile-shear test is $22.3{\sim}23.1kgf/cm^2$ $17.92{\sim}19.75kgf/cm^2$, respectively.

A Study on Tensile Strength According to Various Output Conditions of PLA+ Materials Using 3D Printing (3D 프린팅을 이용한 PLA+ 소재의 다양한 출력 조건에 따른 인장강도에 대한 연구)

  • Na, D.H.;Kim, S.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • 3D printing products manufactured by material extrusion are used in many industrial fields recently. However, these products are difficult to use in the field due to their low tensile strengths. In order to solve this problem, research on improving the tensile strength of the output using a 3D printer has been continuously conducted. In this study, we performed a tensile test using Universal Testing Machine according to infill pattern, nozzle temperature, bed temperature, and printing speed conditions. Results revealed that tensile specimen of concentric shape had the highest tensile strength in infill pattern condition and that the tensile strength increased linearly with increasing nozzle and bed temperatures. However, the tensile strength decreased with increasing printing speed. Consequently, we confirmed that tensile strength could be increased and decreased depending on output conditions of 3D printing.

Experimental study on the tensile strength of gravelly soil with different gravel content

  • Ji, Enyue;Chen, Shengshui;Zhu, Jungao;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.271-278
    • /
    • 2019
  • In recent years, the crack accidents of earth and rockfill dams occur frequently. It is urgent to study the tensile strength and tensile failure mechanism of the gravelly soil in the core for the anti-crack design of the actual high earth core rockfill dam. Based on the self-developed uniaxial tensile test device, a series of uniaxial tensile test was carried out on gravelly soil with different gravel content. The compaction test shows a good linear relationship between the optimum water content and gravel content, and the relation curve of optimum water content versus maximum dry density can be fitting by two times polynomial. For the gravelly soil under its optimum water content and maximum dry density, as the gravel content increased from 0% to 50%, the tensile strength of specimens decreased from 122.6 kPa to 49.8 kPa linearly. The peak tensile strain and ultimate tensile strain all decrease with the increase of the gravel content. From the analysis of fracture energy, it is proved that the tensile capacity of gravelly soil decreases slightly with the increasing gravel content. In the case that the sample under the maximum dry density and the water content higher than the optimum water content, the comprehensive tensile capacity of the sample is the strongest. The relevant test results can provide support for the anti-crack design of the high earth core rockfill dam.