• 제목/요약/키워드: Tensile Mode Growth

검색결과 33건 처리시간 0.033초

접촉피로에 있어서 균열의 발생과 진전특성 (Characteristic of Crack Growth and Progress on the Contact Fatigue (In a case of Metal))

  • 유성근
    • 한국재료학회지
    • /
    • 제7권1호
    • /
    • pp.62-68
    • /
    • 1997
  • 본 연구에서는 접초피로에 있어서 균열의 발생, 진전 등의 관찰을 위해, 균열의 발생, 진전 등이 2차원적으로 되어 시험편측면에서 관찰이 가능한 평판 ring형 시험편을 이용하여 반복수 증대에 따른 균열의 발생, 진전과정을 조사하였다. 그 결과 pitting, flaking형 파손의 초기손상은 접촉면하의 내부에 생기는 접촉면에 평행방향의 균열에 의해 일어나며, 이 균열은 그 방향 밀 파면형태에 의해 접촉응력이 접촉면에 평행방향의 전단응력성분에 의한 모드 ll 피로진전과의 차는 중첩부하된 압축응력의 유무라고 생각되며, 이 가저에 근거로 하여 재료고유의 모드 ll 피로균열진전특성을 구할 수 있는 장치를 개발하였다. 이 장치를 이용하여 알루미륨합금 및 공구강에 대한 da/dN-${\Delta}k$ ll 관계의 시험결과를 얻었다.

  • PDF

전단하중의 크기가 모드 II 분기균열의 형성과 전파에 미치는 영향 (Effects by the Magnitude of Shear Load on the Formation and Propagation of Mode II Branch Cracks)

  • 이정무;송삼홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.487-490
    • /
    • 2004
  • In this paper, we investigated the characteristics of initiation and propagation behavior for fatigue crack observed by changing various shapes of initial crack and magnitudes of loading in modified compact tension shear(CTS) specimen subjected to shear loading. In the low-loading condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack face grew to a main crack. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. The propagation path of fatigue crack under the Mode II loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

전단하중 하의 피로균열 전파거동의 특징 (The Characteristics of Fatigue Crack Propagation Behavior in Shear Load)

  • 이정무;송삼홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.302-307
    • /
    • 2004
  • This paper reviewed characteristics of fatigue crack behavior observed by changing various shapes of initial crack and magnitudes of loading in compact tension shear(CTS) specimen subjected to shear loading. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Meanwhile, the secondary fatigue crack in the low-loading condition which was created in the notch root due to friction on the pre-crack face grew to a main crack. Influenced by the mode II loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. Propagation path of fatigue crack under the shear loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동 (Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length)

  • 정의효
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

혼합모드(I+II)하에서 균열길이 변화에 따른 피로균열 전파 거동 (Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Crack Length)

  • 정의효;허방수;권윤기;오택열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.182-187
    • /
    • 2000
  • The application of fracture mechanics have traditionally concentrated on cracks leaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at prediction of fatigue crack growth behaviour under mixed mode(I+II) in two dimensional branched type precrack. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis(FEA) was carried out. The theoretical predictions were compared with experimental results in this paper

  • PDF

STS316L의 고온피로균열에 미치는 인장유지시간의 효과 및 결정립크기에 따른 크리프 거동에 관한 연구 (The Effect of Tensile Hold time on the Fatigue Crack Propagation Property and Grain Size on the Creep Behavior in STS 316L.)

  • 김수영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.373-378
    • /
    • 2000
  • The heat resistant material, in service, may experience static loading, cyclic loading, or a combination of two. An experimental study of crack growth behavior of STS 316L austenitic stainless steel under fatigue, and creep-fatigue loading conditions were carried out on compact tension specimens at various tensile hold times. In the crack growth experiments under hold times. In the crack growth experiments under hold time loading conditions, tensile hold times were ranged from 5 seconds to 100 seconds and its behavior was characterized using the $\Delta$K parameter. The crack growth rates generally increase with increasing hold times. However in this material, the trend of crack growth rates decreases with increasing hold times for short hold time range relatively. It is attributed to a decline in the cyclic crack growth rate as a result of blunting at the crack tip by creep deformation. The effect of grain size on the creep behavior of STS 316L was investigated. Specimens with grain size of 30, 65 and 125${\mu}{\textrm}{m}$ were prepared through various heat treatments and they were tested under various test conditions. The fracture mode of 316L changed from transgranular to intergranular with increasing grain size.

  • PDF

혼합모드 하중 하에서의 균열성장 중 피로파단면 마찰과 균열닫힘효과의 상호관계 (The Correlation between Fatigue Fracture Crack Surface Friction and Crack Closure Effect in Crack Growth under Mixed-mode loading)

  • 서기정;송삼홍;이정무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.214-219
    • /
    • 2004
  • Crack tip behavior of single mode loading condition(mode I)depend on tensile loading component but one of mixed mode loading condition(mode I+II) have influenced on shear loading component like the practical structure. Because crack closure is caused by shear loading component under mixed-mode loading a research on the behavior in the stage of crack initiation and propagation require to be evaluate about crack closure effect by fatigue crack surface friction. For that reasion we examined the behavior at the crack tip by direct measuring method. Measured behavior at the crack tip was analyzed through vector crack tip displacement. As a result, crack propafation equation was corrected by considering with crack closure effect. In addition we compared fatigue fracture crack surface and crack closure level.

  • PDF

이축하중을 받는 S45C강의 피로균열의 발생과 성장거동 (Behavior of Fatigue Crack Initition and Growth in S45C Steel Under Biaxial Loading)

  • 박선홍;이상협;김상태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.206-211
    • /
    • 2000
  • Fatigue test was conducted on a S45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading system, i.e fully reserved cyclic torsion without a superimposed static tension or compression, fully reserved cyclic torsion with a superimposed static tension and fully reserved cyclic torsion with a superimposed static compression were employed. The test results show that a superimposed static tensile mean stress reduced fatigue lifetime. however a superimposed static compressive mean stress increased fatigue lifetime. Experimental results indicated that cracks were initiated on planes of maximum shear strain with either a superimposed mean stresses or not. A biaxial mean stress had an effect on the direction which cracks nucleated and propagated at stage I (mode II).

  • PDF

Development of Fatigue Performance Model of Asphalt Concrete using Dissipate Energy

  • Kim, Nak-Seok
    • 한국방재학회 논문집
    • /
    • 제10권3호
    • /
    • pp.39-43
    • /
    • 2010
  • 본 연구의 주목적은 아스팔트 혼합물의 피로균열에 대한 예측모델을 개발하는 것이다. 아스팔트 혼합물의 피로균열 시험을 위하여 응력제어 간접인장피로 시험이 수행되었다. 피로균열에 대한 예측모델 개발을 위하여 내적손상비 증가 개념이 도입되었다. 내적손상비증가 개념에서는 방출에너지 개념을 주로 사용하였으며 기준인장변형율 및 변형율 추이 요소 등이 추가로 사용되었다. 피로시험에서 나타난 방출에너지의 원인은 아스팔트 콘크리트 시료 내부의 손상증가와 재료 자체가 갖고 있는 고유의 점탄성 특성에 기인하는 것으로 판단된다. 방출에너지는 하중재하 횟수가 증가함에 따라 점차 증가함을 보였다.

Viscoelastic constitutive modeling of asphalt concrete with growing damage

  • Lee, Hyun-Jong;Kim, Y. Richard;Kim, Sun-Hoon
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.225-240
    • /
    • 1999
  • This paper presents a mechanistic approach to uniaxial viscoelastic constitutive modeling of asphalt concrete that accounts for damage evolution under cyclic loading conditions. An elasticviscoelastic correspondence principle in terms of pseudo variables is applied to separately evaluate viscoelasticity and time-dependent damage growth in asphalt concrete. The time-dependent damage growth in asphalt concrete is modeled by using a damage parameter based on a generalization of microcrack growth law. Internal state variables that describe the hysteretic behavior of asphalt concrete are determined. A constitutive equation in terms of stress and pseudo strain is first established for controlled-strain mode and then transformed to a controlled-stress constitutive equation by simply replacing physical stress and pseudo strain with pseudo stress and physical strain. Tensile uniaxial fatigue tests are performed under the controlled-strain mode to determine model parameters. The constitutive equations in terms of pseudo strain and pseudo stress satisfactorily predict the constitutive behavior of asphalt concrete all the way up to failure under controlled-strain and -stress modes, respectively.