• Title/Summary/Keyword: Tensile Fatigue

Search Result 775, Processing Time 0.033 seconds

Corrosion Fatigue Characteristics of SUS316L Steel with Ti Undercoat using Plasma Spray Method (플라즈마 스프레이방법을 이용하여 Ti 언더코트를 제작한 SUS316L강의 부식피로 특성)

  • Han, Chang-Suk;Kim, Woo-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.172-180
    • /
    • 2021
  • In this study, using the plasma spray method, tensile and compression fatigue tests are performed in saline solution to examine the effect of Ti undercoat on corrosion fatigue behavior of alumina-coated specimens. The alumina-coated material using Ti in the undercoat shows better corrosion fatigue strength than the base material in the entire stress amplitude range. Fatigue cracking of UT specimens occurs in the recess formed by grit-blasting treatment and progresses toward the base metal. Subsequently, the undercoat is destroyed at a stage where the deformation of the undercoat cannot follow the crack opening displacement. The residual stress of the UT specimen has a tensile residual stress up to about 100 ㎛ below the surface of the base material; however, when the depth exceeds 100 ㎛, the residual stress becomes a compressive residual stress. In addition, the inside of the spray coating film is compressive residual stress, which contributes to improving the fatigue strength characteristics. A hardened layer due to grit-blasting treatment is formed near the surface of the UT specimen, contributing to the improvement of the fatigue strength characteristics. Since the natural potential of Ti spray coating film is slightly higher than that of the base material, it exhibits excellent corrosion resistance; however, when physiological saline intrudes, a galvanic battery is formed and the base material corrodes preferentially.

Performance Evaluation of Cold-Recycling Asphalt Mixtures with an Inorganic Additive (무기질 첨가제를 사용한 상온 재활용 아스팔트 혼합물의 공용성 평가)

  • Kim, kyungsoo;Kim, HyunKyum;Kim, WonJae;Park, ChangKyu;Lee, HyunJong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • PURPOSES : The purpose of this study is to estimate the optimum content of an inorganic additive for cold-recycled asphalt mixtures and evaluate its performance. METHODS : An indirect tensile test, a tensile-strength ratio test, and an indirect tensile-fatigue test were conducted on cold-recycling asphalt mixtures with various additives. RESULTS : The laboratory performance tests indicated that granulated blast-furnace slag mixed with inorganic and cement activators provided optimum performance. The performance results of the cold-recycled asphalt pavement were similar to the inorganic and cement activators' performance in terms of the indirect tensile strength, tensile strength ratio, and indirect tensile-fatigue test. CONCLUSIONS : Overall, the performance of a cold-recycled asphalt mixture using inorganic additives and emulsion asphalt was comparable to a warm-recycled asphalt mixture. However, more experiments aimed at improving its performance and studying the effect of the inorganic additives must be conducted.

Fatigue Damage of Quasi-Isotropic Composite Laminates Under Tensile Loading in Different Directions (인장하중방향 변화를 받는 의사등방성 복합재 적층판의 피로손상)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.80-85
    • /
    • 1999
  • The purpose of this work is to investigate fatigue damage of quasi-isotropic laminates under tensile loading in different directions. Low cycle fatigue tests of [0/-60/+60]a laminates and [+30/-30/90]s lamina tes were carried out. Material systems used are AS4/Epoxy and AS4/PEEK. The fatigue damage of [+30/-30/90]s is very different from that of [0/-60/+60]s. The position of delamination generated at AS4/Epoxy and AS$/PEEK laminates were differentiated by the matrix difference that is, we suppose, the value of both GIcr(critical energy release rate of mode-I) and GIIIcr(critical energy release rate of mode-III) difference.

  • PDF

A Study on the Atmospheric Corrosion and Fatigue of Rolling Stock Structures (철도차량 구조물의 대기부식 및 피로에 관한 연구)

  • Goo Byeong-Choon;Kim Jai-Hoon;Jang Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.421-426
    • /
    • 2005
  • In general, structural integrity of rolling stock structures should last more than 25 years. During the lifetime corrosive degradation occurs. For structural design and diagnosis, quantitative relationship between corrosive degradation and variation of mechanical properties such as tensile strength and fatigue strength is needed. In this study, first of all we established the atmospheric corrosion test procedure. At regular intervals using specimens of SM490A and SS400 on the atmospheric corrosion test bed, we carried out tensile and fatigue tests. The fatigue strength decreases as the atmospheric corrosion period increases. And we studied the effect of post-weld heat treatment on the tensile and fatigue behaviour.

  • PDF

Fatigue Damage of Quasi-Isotropic Composite Laminates Under Tensile Loading in Different Directions

  • Kim, In-Kweon;Kong, Chang-Duk;Han, Kyung-Seop
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.483-489
    • /
    • 2000
  • The purpose of this work is to investigate fatigue damage of quasi-isotropic laminates under tensile loading in different directions. Low cycle fatigue tests of $[0/-60/60]_s$ laminates and $[30/-30/90]_s$ laminates were carried out. Material systems used are AS4/Epoxy and AS4/PEEK. The fatigue damage of $[30/-30/90]_s$ is very different from that of $[0/-60/60]_s$. The experimental results are compared with the result obtained from the method for determining strain energy release rate components proposed by the authors. The analytical results were in good agreement with the experimental results. It is proved that the failure criterion based on the strain energy release rate is an appropriate approach to predict the initiation and growth of delaminations under cyclic loading.

  • PDF

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

A Study on the Effect of Fatigue and Crack Propagation Behavior in Spot Weld of High Strength Steel( I ) - Experimental Examination - (고장력 강판의 점용접부에서 면내 굽힘 모멘트가 피로특성 및 균열 성장 거동에 미치는 영향에 관한 연구(I) - 실험적 검토 -)

  • 성기찬;장경복;정진우;김기순;강성수
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.112-117
    • /
    • 2001
  • The factor affecting on the fatigue strength of spot welded specimen have been studied. To analyze and predict crack initiation position and propagation directions on the spot welded area are very important for strength design of the automobile body structure. In fact, there are a various of loads in running automobile but, it is impossible to replay like an actual conditions in the laboratory. So, in this study tensile-shear type and in-plane bending type specimens were used in fatigue test and includes an analysis of fatigue crack initiation position and propagation directions about earth specimens. The results obtained in the present study are summarized as follows: 1. In tensile-shear type fatigue test, the region of fatigue crack initiation position was affected by out-of-plane bending deformation due to bending angle. 2 In in-plane bending type fatigue test, the behavior of fatigue crack initiation position and propagation derections due to angle between upper plate and lower plate was dominated by magnitude of in-plane bending moment.

  • PDF

Effect of Extrusion Temperature on Mechanical Properties and High-cycle Fatigue Properties of Extruded AZ61 Alloy (AZ61 마그네슘 압출재의 압출 온도에 따른 기계적 특성 및 고주기 피로 특성)

  • Kim, Y.J.;Cha, J.W.;Kim, Y.M.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, a commercial AZ61 magnesium alloy is extruded at 300 ℃ and 400 ℃ and the microstructures, mechanical properties, and high-cycle fatigue properties of the extruded materials are investigated. Both extruded materials have a fully recrystallized microstructure with no Mg17Al12 precipitates. The average grain size and maximum basal texture intensity of the extruded material increase with increasing extrusion temperature. The material extruded at 400 ℃ (AZ61-400) has higher tensile yield strength and lower compressive yield strength than the material extruded at 300 ℃ (AZ61-300) because of the stronger basal texture of the former. Because of coarser grain size, the tensile elongation of AZ61-400 is lower than that of AZ61-300. Despite the differences in microstructures and tensile/compressive properties, the two extruded materials have the same fatigue strength of 110 MPa. This is because the finer grain size of AZ61-300 causes an increase in fatigue strength, but its weaker texture causes a decrease in fatigue strength. In both extruded materials, fatigue cracks initiate at the surface of fatigue specimens at all stress amplitudes tested.

Microstructure and High-Cycle Fatigue Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy (Mg-5Bi-3Al 마그네슘 고속 압출재의 미세조직과 고주기피로 특성)

  • Cha, J.W.;Jin, S.C.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.253-260
    • /
    • 2022
  • In this study, the microstructural characteristics of a high-speed-extruded Mg-5Bi-3Al (BA53) alloy and its tensile, compressive, and high-cycle fatigue properties are investigated. The BA53 alloy is successfully extruded at a die-exit speed of 16.6 m/min without any hot cracking using a large-scale extruder for mass production. The homogenized BA53 billet has a large grain size of ~900 ㎛ and it contains fine and coarse Mg3Bi2 particles. The extruded BA53 alloy has a fully recrystallized microstructure with an average grain size of 33.8 ㎛ owing to the occurrence of complete dynamic recrystallization during high-speed extrusion. In addition, the extruded BA53 alloy contains numerous fine lath-type Mg3Bi2 particles, which are formed through static precipitation during air cooling after exiting the extrusion die. The extruded BA53 alloy has a high tensile yield strength of 175.1 MPa and ultimate tensile strength of 244.4 MPa, which are mainly attributed to the relative fine grain size and numerous fine particles. The compressive yield strength (93.4 MPa) of the extruded BA53 alloy is lower than its tensile yield strength, resulting in a tension-compression yield asymmetry of 0.53. High-cycle fatigue test results reveal that the extruded BA53 alloy has a fatigue strength of 110 MPa and fatigue cracks initiate at the surface of fatigue test specimens, indicating that the Mg3Bi2 particles do not act as fatigue crack initiation sites. Furthermore, the extruded BA53 alloy exhibits a higher fatigue ratio of 0.45 than other commercial extruded Mg-Al-Zn-based alloys.

Fatigue Properties of Glass Fiber Reinforced Polymer Composite Panels (유리섬유보강 폴리머 복합패널의 피로특성)

  • Yeon, Kyu-Seok;Kim, Soo-Bo;Ryu, Neung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.29-36
    • /
    • 2004
  • In this study, The fatigue properties of the GFRP composite panels of which core was made of the polymer mortar and both facings were reinforced by the high-tensile GFRP were surveyed. Composite-panel specimens consisted of polymer mortar core and GFRP compressive and tensile sides with various thickness were produced for an experimental study. Flexural fatigue tests were conducted to examine the correlation between the fatigue load and the fatigue life for various thickness of core and facings, and its results are presented. The correlation obtained in this study between the fatigue load and the fatigue life for various thickness arc in good agreement with the modified Miner's law.