• 제목/요약/키워드: Tensile Fatigue

검색결과 775건 처리시간 0.025초

피로균열이 진전할 때 용접잔류응력의 재분포와 그 영향 (Redistribution of Welding Residual Stress and its Effects on Fatigue Crack Propagation)

  • 이용복;조남익
    • Journal of Welding and Joining
    • /
    • 제13권4호
    • /
    • pp.155-162
    • /
    • 1995
  • Redistribution of residual stress and its effects during fatigue crack propagates from tensile residual stress region in weldment are investigated. Tests are performed by using welded CCT specimens of structual rolling steel (SS400) and it makes fatigue crack propagate from tensile residual stress region. For this study tension-tension loading type is selected by external loading condition and magnetizing stress indicator is used correctly to measure redistribution of residual stress according to fatigue crack growth and number of loading cycles. From this result, it is proved that redistribution of residual stress is mainly consist of residual stress released by fatigue crack growth. When fatigue crack propagates from tensile residual stress region residual stress are redistributed and it makes fatigue crack growth rate largely increase. Fatigue crack growth rate is low in case of redistributed residual stress compare with initial distributed residual stress.

  • PDF

미소 원공결함을 갖는 Cr-Mo-V강의 고온피로 크랙전파거동 (A Study on the Fatigue Crack Propagation Behavior of Cr-Mo-V Alloy with Micro Defects at High Temperature.)

  • 송삼홍;강명수
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.70-77
    • /
    • 1996
  • Fatigue tests were carried out at high temperature on a Cr-Mo-V steel in order to assess the fatigue life of components used in power plants. The characteristics of high temperature fatigue were divided in terms of cycle-dependent fatigue and time-dependent fatigue, each crack propagation rate was examined with respect to fatigue J-integral range, .DELTA. J$_{f}$and creep J-integral range, .DELTA. J$_{c}$. The fatigue life was evaluated by analysis of J-integral value at the crack tip with a dimensional finite element method. The results obtained from the present study are summarized as follows : The propagation characteristics of high temperature fatigue cracks are determined by .DELTA. J$_{f}$for the PP(tensile plasticity-compressive plasticity deformation) and PC(tensile plasticity - compressive creep deformation) stress waveform types, and by .DELTA. J$_{c}$for the CP(tensile creep- compressive plasticity deformation) stress waveform type. The crack propagation law of high temperature fatigue is obtained by analysis of J-integral value at the crack tip using the finite element method and applied to examine crack propagation behavior. The fatigue life is evaluated using the results of analysis by the finite element method. The predicted life and the actual life are close, within a factor of 2.f 2.f 2.

  • PDF

피로하중을 받는 강섬유보강콘크리트의 인장변형에 관한 연구 (Tensile Strain of Steel Fiber Reinforced Concrete under Fatigue Load)

  • 장동일;채원규;박철우;민인기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.82-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC (steel fiber reinforced concrete)to investigate the flexural tensile behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. Beam specimens of 10$\times$10$\times$60cm are used. the specimen series are classified according to the steel fiber contents varying 0.5. 1.0, 1.5%, and to the steel fiber aspect ratios varying 60, 80, 100. The three point loading system was used in the fatigue tests. The minimum value of repeated loading was fixed at 10.0kgf and maximum value was 75% to static ultimate strength for periodically using concrete strain gages located at the lower end of the mid-span, and the stress-strain curves were drawn for each specimens, respectively. From the tests result, it was found that the larger steel fiber content and the smaller the steel fiber aspect ratio is , the tensile strain of SFRC under fatigue load proportionally increases. By the regression analysis on these results, the empirical formulae to predict the tensile strain of SFRC were suggested. In comparison of the tensile elastic modulus under fatigue load, it was also found that the larger steel fiber content and the smaller steel fiber aspect ratio is , the smaller decreasing rate of the stiffness of SFRC under fatigue load decreased.

  • PDF

SUS304L 겹침 용접부에 대한 극저온에서의 인장 및 피로강도에 관한 실험적 연구 (An Experimental Study on the Tensile and Fatigue Strengths of SUS304L Lap Joint Weld at the Cryogenic Temperature)

  • 김경수;부승환;박창열;조영근;이정수
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.96-102
    • /
    • 2008
  • As LNG tank is operated around $-162^{\circ}C$, an experimental approach on the cryogenic temperature tensile and fatigue strengths of SUS304L lap joint weld is very important at the design stage of membrane type LNG tank. In this study, in order to estimate the tensile and fatigue strengths of SUS304L lap joint weld at cryogenic temperature condition, tensile and fatigue tests were conducted. Also, S-N curves are presented with statistical testing method recommended by JSME. As a result of the experimental approach, the d£sign guide of fatigue strength is proposed and that is expected to be useful for membrane type LNG tank design.

초경량 인라인 스케이트 프레임의 피로 내구성 평가 (Evaluation of Fatigue Endurance for an Ultra-light-weight Inline Skate Frame)

  • 이세용;김호경
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.1-5
    • /
    • 2011
  • In order to evaluate fatigue endurance for an ultra-light weight inline skate frame, FEM analysis was performed. Tensile properties and a S-N curve were determined through tensile and fatigue tests on a modified Al-7075+$S_c$ alloy. The yield and ultimate tensile strengths were 553.3 MPa and 705.5 MPa, respectively. The fatigue endurance limit of this alloy was 201.2 MPa. For evaluating the fatigue endurance of the inline skate frame, the S-N data were compared with the stress analysis results through FEM analysis of the frame. The maximum Von-Mises stress of the frame was determined 106 MPa through FEM analysis of the frame, assuming that the rider weight is 75 Kg. Conclusively, on the basis of fatigue limit, the inline skate frame has a safety factor of approximately 2.0.

가설환경에 따른 조가선의 피로수명 특성 (Fatigue Life Properties of Messenger Wire with Service Environments)

  • 김용기;장세기;조성일
    • 한국철도학회논문집
    • /
    • 제6권1호
    • /
    • pp.21-28
    • /
    • 2003
  • Environment-dependent fatigue life of Cu-Cd alloy wires used as messenger wires was investigated. Tensile test results showed the decrease of tensile strength and elongation of messenger wires by 3.7% and 16.8%, respectively, in used specimens when compared to new ones. Messenger wires used at industrial region for 26 yeras showed 35∼50% decrease in fatigue life, which is partly due to the in stress concentrations by formation of corrosion products at the surface. Single wires showed better fatigue properties than stranded wires, especially at low cycle regions with higher stresses. Stranded wires showed shorter fatigue lives than single wires because of friction between wires by surface contact. Service life of messenger wires was dependent upon the environments which they were exposed to. SO$_2$ and humidity deteriorated the fatigue properties by environmental degradation.

인장-전단 하중을 받는 점용접부의 피로균열 전파거동에 관한 연구 (A Study on the Fatigue Crack Propagation Behavior of Spot Welds under Tensile-shear Load)

  • 이용복
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.27-33
    • /
    • 1997
  • Spot welding has been used in the sheet metal jointing processes because of its high productivity and convenience. In this study, effects of welding conditions on the fatigue life and prediction methods of fatigue life of spot welded joint have been studded . Fatigue life was estimated by stress index parameter considering multiaxial stresses. Fatigue tests were conducted with the tensile-shear specimens using SPCC. Fatigue life of spot welded joint was influenced by welding currents and was predicted exactly with taking into account StageIII.

  • PDF

하중작용방식에 따른 점용접재의 피로거동 (A Study on the Fatigue Behavior of Spot Weld Specimen as Applied Load Pattern)

  • 송삼홍;양윤진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.485-488
    • /
    • 2000
  • In this study, the fatigue characteristic of spot weld specimen was studied by using the various specimen. The specimen types were tensile shear specimen welded one spot and two spot, and cross tension. The tensile tests and fatigue tests were executed to know the mechanical properties under static and fatigue load condition. In addition, the relationship was illustrated by finite element method.

  • PDF

용접부의 인장 및 압축잔류응력에 관한 피로균열 전파거동 (Fatigue Crack Propagation Behaviors on Tensile and Compression Residual Stresses in Weld Zone)

  • 이하성;강동명
    • 한국안전학회지
    • /
    • 제9권3호
    • /
    • pp.13-21
    • /
    • 1994
  • Effects of tensile and compression residual stresses in the welded SS41 and A17075-76 on fatigue crack propagation behavior are investigated when a crack propagates from residual stresses region. We propose the fatigue crack growth equation on tensile and compression residual stresses in welded metal. The results obtained in this experimental study are summarized as follows . 1 ) A fatigue crack growth equation which applied fatigue fracture behavior of the welded metal is proposed. (equation omitted) where, $\alpha$, $\beta$, ${\gamma}$ and $\delta$ are constants, and R$_{eff}$ is effective stress ratio [R$_{eff}$=(Kmin+Kres)/(Kmax+Kres)], Kcf is critical fatigue stress intensity factor. The constants are obtained from nonlinear least square method. The relation between crack length and number of cycles obtained by integrating the fatigue crack growth rate equation is in agreement with the experimental data. 2) The experimental results confirmed that the cause of crack extension and retardation by residual stresses has relation to the phenomenon of crack closure. 3) The relaxing trend of residual stresses by the crack propagation was greater In case of compressive residual stress than that of tensile residual stress in the welded metal.tal.

  • PDF

TIG 용접한 저방사화 페라이트강 (JLF-1)의 고온강도 및 피로수명특성 (High Temperature Tensile Strength and Fatigue Life Characteristics for Reduced Activation Ferritic Steel (JLF-1) by TIG Welding)

  • 윤한기;이상필;김사웅
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1444-1450
    • /
    • 2003
  • The fatigue life and tensile strength of JLF-1 steel (Fe-9Cr-2W-V-Ta) and its TIG weldment were investigated at the room temperature and $400^{\circ}C$. Four kinds of test specimens, which associated with the rolling direction and the TIG welding direction were machined. The base metal of JLF-1 steel represented almost anisotropy in the tensile properties for the rolling direction. And the base metal of JLF-1 steel showed lower strength than that of TIG weldment. Also, the strength of all materials entirely decreased in accordance with elevating test temperature. Moreover, the fatigue limit of weld metal was largely increase than that of base metal at both temperatures. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The SEM fractography of tensile test specimen showed conspicuous cleavage fracture of a radial shape. In case of fatigue life test specimen, there were so many striations at crack initiation region, and dimple was observed at final fracture region as a ductile fracture mode.