• Title/Summary/Keyword: Tensile Experiment

Search Result 665, Processing Time 0.027 seconds

The Effect of Stress on Borehole Deformability (응력이 공내 변형률에 미치는 영향)

  • 윤건신
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.219-234
    • /
    • 1998
  • Modulus measurements in vertical boreholes under simulated horizontal in-situ stress conditions were performed on laboratory rock specimens. The experimental program was focused on the examination of modulus change with the variation of the orientation, magnitude and ratios of horizontal biaxial stresses. The experiment results show that the modulus increases when the magnitude of the horizontal stresses increases. The modulus measured in the minimum principal direction increased when the ratio between the horizontal principal stresses increased, while the modulus measured in the maximum principal direction decreased when the ratio of the horizontal principal stresses increased. These were caused by the tangential stresses that vary depending upon the magnitude of horizontal stresses, the applied pressure and the orientation of measurement. Also, the measured moduli were determined under tensile stress, compressive stress, or both stresses. Thus, the stress effect on deformation modulus should be considered, not only for the interpretation of the results of borehole deformability measurement, but also for the design of underground gas storage and pressure tunnel, and for the interpretation of tunnel monitoring.

  • PDF

Establishing the Structural Criteria to install Scaffolding-Use Brackets (비계지지브라켓 유형별 구조기준 설정에 관한 실험적 연구)

  • Son, Ki-Sang;Kal, Won-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.87-96
    • /
    • 1995
  • It is only three(3) years since we applied brackets for scaffolding in the construction area. Unfortunately, there is no structural criteria on how to install those in the site so far, despite the fact that those brackets have been applied into the site by the firms already. It is shown that resistant capacity of each bracket type has been investigated, analyzed from this experimental study. Accident-concerning data on construction site analyzed by the Ministry of Labor, show temporary structure involves 18.6% of the total industrial accident, which the accidents from scafold-supporting brackets have rate of 42.5% of the ones occurred from the temporary structures. There are two main aspects to be observed : one is how much resistant capacity the brackets have themselves, the other is how exactly to install those without eccentricity. But practically, nobody does check of this bolt-installing conditions in the site and no check of tightening level of nut because there is no available tool to check torque amount for this kind of nut. We just have to rely on scaffolders experience of this tightening. This experiment involves just this variable of tightness at site. Eventually this insufficient tightness causes to collapse those scaffolding structures. The bracket might have less the one than its original capacity due to this insufficient tightness. Three(3) times of PIVOT tests show that fractured condition of two(2) row brackets has occurred mostly at lower bolt due to shear force. Therefore, tightness of bracket-installing bolt, tensile strength of the bolt, shear strength of the bolt, loading condition with equal two point or inequal two point loads, are mainly investigated as variables in this study.

  • PDF

An Experimental Study on Size-effect for Characteristic of Flexural Strength of Pavement Concrete (포장 콘크리트의 크기 효과에 따른 휨 강도 특성 분석에 관한 실험적 연구)

  • Lee, Hyeongi;Oh, Hongseob;Sim, Jongsung;Sim, Jaewon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.299-306
    • /
    • 2015
  • The quality for the domestic pavement is evaluated based on flexural strength at the age of 28 days in accordance with KS regulation. Most specimens of the flexural tensile strength used currently are relatively large ones with a dimension of $150{\times}150{\times}550mm$. Accordingly, it is difficult to treat the specimens, and the utilization of a curing tank is low. In this paper, the study tried to resolve the problem by specimen size specified in the code. For this purpose, a flexural strength test was conducted according to the log scale within the specimen size specified by the KS. And, based on the results of this experiment, a comparative analysis was conducted using the prediction formula of Size Effect Law (SEL) proposed by Bazant to examine the correlation between specimen sizes, so as to use the result as basic data for the reduction of the specimen size in the quality evaluation of concrete pavement.

The study on corrosion fatigue and cathodic protection of the steel plates used for the shipbuilding (조선용강재의 부식피로와 전기방식에 관한 연구)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.126-142
    • /
    • 1985
  • The plane bending corrosiion fatigue test for the welded metal parats was performed in the air and in the natural sea water with and without applying cathodic protection. The specimens tested were the weld of SM41 steel plates, SM58 steel plates and of SM41 to SM58, which were all prepared by submerged arc welding. The main results obtained from the experiment are summarized as follows: (1) In case with SM41 and SM58 steel plates, lower value of impact strength, higher value of hardness and more noble electrode potential were observed in the welded metal part than in the HAZ and base metal. Also the lowest hardness zone in the HAZ was observed with SM58 which was not found with SM41. In case with weld specimen of SM41 to SM58, the impact strength and the electrode potential of the welded metal part showed again the lowest and most noble value but the hardness value was located between those of SM41 and SM58 base metal. (2) In the fatigue test, the specimens tested in the air and under the cathodic protection were both cracked in a purely mechanical mode, but the specimens tested without cathodic protection were cracked by the combination of mechanical fracture and electro-chemical corrosion. (3) The corrosion fatigue limit of the welded metal parts of the specimen was increased by the cathodic protection. As the protection potential was varied down to -800 mV vs. SCE the fatigue limit was increased to the value tested in the air, and the maximum fatigue limit appeared at the -1, 000 - -1, 200 mV vs. SCE. However, as the protection potential was further decreased below -1, 200 mV vs.SCE, the fatigue limit of weld of SM58 and of SM41-SM58 joining was decreased but the limit was almost constant in the case of weld of SM41. (4) It is suggested that when designing steel ship the corrosion fatigue limit of welded metal parts should be stressed as a designing strength of the structure of steel ship in addition to the conventional basis considering simply tensile strength of steel and safety factor.

  • PDF

Net Shaping Process to Minimize Cutting amount of Turbocharger Control Plate (터보차저 컨트롤 플레이트의 절삭량 최소화를 위한 정형공정)

  • Yoon, Pil-Hwan;Lee, Seon-Bong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.53-61
    • /
    • 2017
  • Turbocharger is a device for increasing the power of a vehicle engine. The control plate is the main component for fixing the vane of the turbocharger. Now, the control plate is made of austenite steel cutting after the casting process. It has excellent corrosion, heat resistance and mechanical characteristics of material. However, present the process is made by cutting after casting. when cutting is processed after casting, so materials, processing time, and processing energy are lost. Therefore, this study proposes a process to powder compact use of stainless steel Deklak2 and to minimize amount of cutting through net shape process. The mechanical properties of Deklak2 were verified by tensile test, hardness test and relative density measurement, and the governed equation was defined. Also, the curvature radius 1, 2 and the density, affects the shape, were selected as the design parameters, and the best process conditions was proposed through the Taguchi method and the evaluation of SN ratio. And then prototype molds were fabricated and compared with the results of the finite element analysis for the verification, and it was found that the tendency of relative density and dimension was coincided. Therefore, it was found that the amount of cutting can be minimized by only the net shape process after the sintering process and it can be applied to mass production.

Prediction and Analysis of Fracture Strength for Surface Flawed Laminates (표면 손상을 입은 적층판의 강도 예측 및 분석)

  • 최덕현;황운봉
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.15-20
    • /
    • 2003
  • In this paper, the fracture strength of the surface damaged laminates was predicted by applying the fracture strengths of the unflawed and flawed laminates. For prediction, the theoretical equation about the fracture strength of laminates was simplified applying classical laminate theory and was applied to the surface damaged laminates. Lagace's and Tsai's experimental data were used for verifying the theoretical equation. Moreover, to verify the theoretical prediction, an experiment was performed. Surface unflawed laminate and flawed laminates were fabricated and the experiments were made and these results were compared with theoretical predictions. The specimens' fiber direction was same to the tensile direction and the theoretical predictions and the experimental results were showed good agreement. Therefore, by this equation, the fracture strength of structures made of composites will be able to be predicted when the surface of the structures was damaged.

Polymerization Shrinkage Distribution of a Dental Composite during Dental Restoration Observed by Digital Image Correlation Method (디지털 이미지 상관법을 이용한 치과용 복합레진의 수복 시 중합수축분포 관찰)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.393-398
    • /
    • 2017
  • The shrinkage distribution of a dental composite (Clearfil AP-X, Kuraray, Japan) used for dental restoration was observed using a digital image correlation method. In order to analyze the shrinkage distribution formed during and after light irradiation, digital images were taken with different photographing conditions for each period. Optimal photographing conditions during LED irradiation were obtained through a preliminary experiment in which the exposure time was applied from 0.15 ms to 0.55 ms in 0.05 ms intervals. The DIC analysis results showed that the strain was non-uniform. For the initial 20 s of light irradiation the composite resin shrank to the level of 50~60% of the final curing shrinkage. Such large shrinkage amount of the composite resin lump affected the tensile stress concentration near the adhesive region between the composite resin and the substrate.

A study on Mechanical Properties of Acrylic-casein Hybrid Resins for Surface Protection (표면 보호용 수용성 Acrylic-casein Hybrid Resin의 합성 및 기계적 물성에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.618-625
    • /
    • 2012
  • In this study, prepared synthesis waterborne acrylic resin and water soluble milk casein resin. And than extent of casein contents in acrylic resin. We measured property of these samples by Lamb leather which is coated by acrylic-casein resins. According to measure data for solvent resistance, WAR resin and Hybrid resins had good property. Among this result knew that increase of casein constant did not influence to big change of hybrid resin property. As test of tensile strength, WAR had lowest strength($1.399kg_f/mm^2$) and WAC-3 had highest strength($1.426kg_f/mm^2$). Also we knew that best property of abrasion was WAC-3(69.774 mg.loss). In elongation case, WAR had best property(820%) in this experiment.

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Numerical Analysis of Welding Residual Stresses for Ultra-thick Plate of EH40 TM and API 2W Gr.50 Steel Joined by Flux Core Arc Welding (EH40과 API2W강재의 극 후판재 다층 FCAW 버트 접합부 잔류응력해석)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Yang, Young-Sik;Lee, Sung-Je;Kim, Byung-Jong
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.65-72
    • /
    • 2010
  • Some structural members of large-scale marine vessels such as large-scale offshore structures and very large container ships are assembled by very thick plates of which thickness exceeds 60mm. Also, high-tensile steels have been selected to meet the required structural strength and fatigue strength. Generally, multi-pass welding method such as FCA(Flux-Core Arc) welding has been used to join the thick plates. Considering the welding residual stresses, fatigue strength of the welded joints of thick plates should be assured since the residual stress influences the fatigue strength. This paper presents a numerical procedure to investigate the residual stress of structure joined by multi-pass FCA welding so that it can be incorporated into the fatigue strength assessment considering the effect of welding residual stress. The residual stress distribution is also measured by X-Ray diffraction method. The residual stress obtained by the computational model also has been compared with that of experiment. The results of FEA are in very good agreement with the experimental measurements.