• 제목/요약/키워드: Tensile Experiment

검색결과 661건 처리시간 0.028초

Al/CFRP 하이브리드 복합재료의 인장파괴거동 (The Behavior of Tensile Fracture for Al/CFRP Hybrid Composite Material)

  • 강지웅;권오헌;유진규
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.23-29
    • /
    • 2009
  • The hybrid composite materials are recently used in many field as an advanced material due to their high resistance to fracture. However, hybrid composite materials have several problems, especially delamination, compared with homogeneous materials such as an aluminum alloy, etc. In this study, we carried out the tensile test to study the tension failure appearances and tensile ultimate strength of CFRP/Al/CFRP hybrid composite materials. The CFRP material used in the experiment is a commercial material known as CU175NS in unidirectional carbon prepreg. Also Al/CFRP/Al hybrid composites with three kind length of a single edge crack were investigated for the relationship between an aluminium volume fraction and a crack length. The crack length was measured by a traveling microscope under a universal dynamic tester. Futhermore the stress intensity factor behavior was examined according to a volume fraction and an initial crack length ratio to a width.

피혁가공용 수용성 아크릴-폴리우레탄 Hybrid Resin의 합성 및 기계적 특성에 관한 연구 (Study on Mechanical Properties of Waterborne Polyurethane-Acrylic Hybrid Resin for Leather Coationgs)

  • 이주엽;김기준
    • 한국응용과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.188-195
    • /
    • 2010
  • In this study, we experimented that how to synthesis waterborne urethane-acrylic hybrid resin for leather coatings. First of all, We had analyzed data by FT-IR, SEM and TGA for the machanical properties. By TGA analysis polymers showed heat distortion temperature. and by FT-IR measurement we confirmed that synthesis of urethane and acrylic. In the experiment, solvent resistance, polyurethane and acrylic grades 4-5 showed both a high. Tensile strength measured in the waterborne polyurethane > Acrylic emulsion showed strength in the order. Films were obtained by coating the water born resin on leveled surfaces and allowing them to dry at room temperature for 72hrs. After demolding, the films were kept in a desiccator to avoid moisture contant at $25^{\circ}C$ for 45hrs before the measurements. In this result, the mechanical propersies of waterborne polyurethane-acrylic hybrid resin showed that how effect to resin in leather coating between polyurethane content and acrylic content. Therefore, acrylic emulsion had most high solvent resistance glade and waterborne polyurethane had good result in abrasion test and tensile strength.

주조/단조 기술을 이용한 알루미늄 쉬프트 포크 제조에 관한 연구 (A Study on the Manufacturing of an Aluminum Shift-Fork by Casting/Forging Process)

  • 배원병;이승재;유민수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.193-197
    • /
    • 2002
  • In this study, the casting/forging process was applied to the Shift-Fork, a manual transmission part of automobiles. In the casting experiments, the effects of additives, Sr, Ti+B and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. When 0.03% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform and the highest tensile strength and elongation accomplished. And when 0.2% Ti+B were added into the molten Al-Si alloy, the highest values of tensile strength were obtained. The maximum hardness was in case of 0.2% Mg. In the forging experiment, it was confirmed that the optimal configuration of the cast preform could be predicted by FE analysis. To minimize the cost as the press size, the compact shape of preform was proposed to reduce the volume of flash. The modification of shape in designing preform was performed to attain a satisfactory performance in the areas where the mechanical strength were more required. By using FVM(Finite Volume Method) software, it was verified that a proposed casting design was available. To identify the relationship between effective strain and mechanical properties of the final forged product, the compression test was performed. As the result, the tensile strength and elongation of a cast preform were much higher than before forging. The minimum forging temperature was found 40$0^{\circ}C$ to save heating time.

  • PDF

내구성 부직포의 마찰 및 세탁에 의한 인장강도 및 강연도 변화 (Changes in Tensile Strength and Stiffness of Selected Durable Nonwoven Fabrics due to Abrasion and Laundering*)

  • 김철주;애브린 하게트
    • 한국의류학회지
    • /
    • 제9권3호
    • /
    • pp.35-44
    • /
    • 1985
  • This research explored the effects of abrasion, laundering, and abrasion/laundering interaction upon wear of 15 durable nonwoven fabrics. Wear was measured in terms of changes in tensile strength and stiffness. The test materials consisted of nine different dry-laid commercial interfacing fabrics of various fiber contents and six spunbonded poyester and polypropylene fabrics. Three fixed levels of abrasion and four fixed levels of laundering made up the 3$\times$4 factorial analysis used for the experiment and the analysis of variance. Findings revealed that abrasion had a greater effect than laundering on strength and stiffness of the tested fabrics. Laundering seemed related to the particular fibers used and to the fixation quality of fiber bonds. Spunbonded webs performed better than dry-laid webs in retaining tensile strength Stiffness change occurred more readily than strength change. Lighter, flexible, stretchable fabrics seemed less easily abraded than heavier, stiff, less stretchable fabrics. The interfacing fabrics of 70/20/$10\%$ nylon/polyester/rayon blends with high crosswise stretchability effectively resisted wear caused by abrasion and laundering. Further research is recommended to study the effects of longer abrasion periods and additional laundering cycles o,1 wear qualities of nonwoven fabrics. Additional factors such as amount and fixation methods of bonding agents, the effect of shear distortion, seam construction, and drycleaning solvents could also be studied.

  • PDF

통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측 (Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm)

  • 정진수;이희근;박영환
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.

콘크리트 인장강성이 철근콘크리트 보의 거동에 미치는 영향 (Effect of Tension Stiffering on the Behavior of Reinforced Concrete Beam)

  • 이봉학
    • 한국농공학회지
    • /
    • 제41권4호
    • /
    • pp.104-112
    • /
    • 1999
  • Tensile behavior in concrete has been neglected until recently. However, the effect of tensile stresses in concrete must be considered where the member primarily carries tensile forces or when ultimate strength is affected by the cracking history. In this paper, a series of experiments were performed with a reinforced rectangular beams of 15 specimens in order to investigate the effect of tension stiffening into the nonlinear analysis and cracking behavior. The experimental results were analyzed in terms of load-deflection curves and strain fracture energy with respect to the main experimental variables such as types of specimen, strength of concrete and steel ration. The results from experiments and finite element analysis were compared in terms of load-deflection relationship and cracking pattern. The results are as follows ; The tension stffening effects of reinforced concrete beams were observedc up to yielding of members after cracking showing strain energy difference of 35 % at the beam of 0.57% steel ratio compared with that of beam ignoring the tension stiffening effect. The tension stiffening of concrete strength 400kgf/$\textrm{cm}^2$ and 600kgf/$\textrm{cm}^2$ increased by 8% and 13%, respectively, compared with that of concrete strength 200kgf/$\textrm{cm}^2$. The tension stiffening effects were greater at a ductile member rather than a brittle one. The load-deflection results of finite element analysis showed very similar results from experiment. The crack growth and pattern might be predicted from the nonlinear finite element analysis considering concrete stiffening.

  • PDF

The discrete element method simulation and experimental study of determining the mode I stress-intensity factor

  • Shemirani, Alireza Bagher;Haeri, Hadi;Sarfarazi, Vahab;Akbarpour, Abbas;Babanouri, Nima
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.379-386
    • /
    • 2018
  • The present study addresses the direct and indirect methods of determining the mode-I fracture toughness of concrete using experimental tests and particle flow code. The direct method used is compaction tensile test and the indirect methods are notched Brazilian disc test, semi-circular bend specimen test, and hollow center cracked disc. The experiments were carried out to determine which indirect method yields the fracture toughness closer to the one obtained by the direct method. In the numerical analysis, the PFC model was first calibrated with respect to the data obtained from the Brazilian laboratory test. The crack paths observed in the simulated tests were in reasonable accordance with experimental results. The discrete element simulations demonstrated that the macro fractures in the models are caused by microscopic tensile breakages on large numbers of bonded particles. The mode-I fracture toughness in the direct tensile test was smaller than the indirect testing results. The fracture toughness obtained from the SCB test was closer to the direct test results. Hence, the semi-circular bend test is recommended as a proper experiment for determination of mode-I fracture toughness of concrete in the absence of direct tests.

국내 현장가열재생아스팔트 시공 혼합물 시험평가 (A Case Study of Hot In-Place Recycling Asphalt Mixture in Korea)

  • 권수안;양성린;이재준;홍재청;임재규
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.57-63
    • /
    • 2013
  • PURPOSES: This study is to investigate the Hot In-Place recycling asphalt mixture in Korea using field produced materials. METHODS: Hot In-Place reclaimed asphalt mixture was investigated to evaluate the mixture properties based on various test results such as Marshall Test, Indirect Tensile Test, TSR, and Wheel Tracking Test. These test values were compared with domestic standard specification. RESULTS: The result of the laboratory experiment indicates that the Hot In-Place Reclaimed(HIR) asphalt mixture produced at the field constrution site was satisfied all of the test criteria such as Indirect tensile test, Marshall and TSR test, and wheel tracking test. During the test, the research team found that current HIR system is required an extention of mixing time to improve quality and to reduce variation of sample to sample. Although the current HIR mixture was passed the test criteria, there is a potential capability to enhance the mixture properties as extend mixting time. CONCLUSIONS: Based on these laboratory test results, It would be concluded that domestic HIR mixture's properties were satisfied all standard specification related with evaluation of recycling asphalt mixtures. Based on this case study result, there is a chance to save construction cost and increase the usage of reclaimed asphalt concrete in the future.

파이프 원주방향 용접부의 잔류응력분포 특성에 관한 실험적 연구 (An Experimental Study on the Residual Stress Distribution at Circumferential Welds in Pipes)

  • 남궁재관;홍재학
    • 한국정밀공학회지
    • /
    • 제8권1호
    • /
    • pp.41-49
    • /
    • 1991
  • A knowledge of the resdual stress distribution at circumferential weldments can normally increase the accuracy of a fracture assessment in pipe line. In this paper, we present the measurements about the residual stress distributions at three kinds of circumferential butt welded pipes using the holl drilling strain gage method. By this experiment, we have obtined the following characteristics. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed from compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self-restraint bending force in the pipe welding.

  • PDF

섬유강화 복합재료의 인장 및 굽힘에 의한 파괴 (Fracture Behavior of Fiber Reinforced Composites under tensile and Bending Loadings)

  • 남기우;문창권
    • 수산해양기술연구
    • /
    • 제30권1호
    • /
    • pp.45-52
    • /
    • 1994
  • The study was conducted to evaluate reliability of the longitudinal tensile properties of unidirectional carbon fiber reinforced composites. Two kinds of carbon fiber reinforced composites laminates were tested in order to examine the factors of variability and have the information concerning reliability improvement. Temperature dependence of the strength and its variability were investigated by means of testing at two kinds of temperatures. Statistical distributions of the respective mechanical properties were obtained from the tensile tests. As a result, strength of composites was directly proportional to the ultimate strain and was not proportional to the elastic modulus. The fracture behavior in bending of notched plate was studied for a composite material. The uniform bending tests of notched plates have been carried out for a wide range of notch radii. The experiment shows that the nominal stress at failure decreased with decreasing notch radius and it approaches a constant value when the notch radius is less than about 0.3mm. The critical maximum stress is governed by notch root radius alone in the case of a constant thickness of specimen.

  • PDF