• 제목/요약/키워드: Tenorite

검색결과 11건 처리시간 0.026초

진공관형 태양열 집열기의 구리-유리 직접 접합 기술 (Technique of Direct Copper to Glass Seal in an Evacuated Tube Solar Collector)

  • 김철영;임형봉;조남권;곽희열
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.544-551
    • /
    • 2006
  • The sealing technique between a glass tube and a copper heat pipe in an evacuated tube solar collector is studied. In this study two different sealing techniques, such as flame method and furnace firing, are examined. After the sealing of a copper to a glass, the oxidation state of the copper and its bonding morphology were examined by SEM and XRD. Its oxidation was retarded by coating of borate solution on the copper, and $Cu_2O(cuprite)$ turned into CuO(tenorite) with increase in a firing temperature and firing time. Porous structure was found in the oxide layer when CuO formed. The best sealing morphology was observed when the thickness of the oxidation layer was less than $20{\mu}m$. The sealing technique performed in a furnace was promising and the satisfactory result was obtained when the sample was fired at $950^{\circ}C$ for 5 min under $N_2$ atmosphere. Annealing procedure is recommended to remove the stress left at the bonding zone.

Facile Fabrication of Carbon Nanotubes@CuO Composites by Microwave Method

  • Kim, Tae Hyeong;Cha, Dun Chan;Jeong, Jung-Chae;Lee, Seunghyun
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.113-116
    • /
    • 2021
  • In this study, we report a facile fabrication of multi-walled carbon nanotubes (MWCNTs)-CuO composites synthesized by a microwave method using MWCNTs and copper oxide (CuO). The number of copper hydrate precursors affect the size and number of CuO domains formed along the MWCNTs in the composites. The domain size is controllable from 239 nm to 348 nm. The composites are characterized by transmission electron microscopy, energy dispersive spectrometry, X-ray diffraction (XRD), Raman spectroscopy, and UV-Vis spectroscopy. The CuO produced in the composites is confirmed to be tenorite with a monoclinic crystal structure through the XRD patterns of (-111), (111) and (-202).

인공 산성광산배수의 pH변화에 의한 중금속 제거 및 침전 특성 연구 (Characteristics of Removal and Precipitation of Heavy Metals with pH change of Artificial Acid Mine Drainage)

  • 이민현;김영훈;김정진
    • 자원환경지질
    • /
    • 제52권6호
    • /
    • pp.529-539
    • /
    • 2019
  • 본 연구에서는 pH 변화에 따른 인공 산성광산배수로부터 중금속 제거와 침전물 생성에 대한 연구를 수행하였다. 인공 산성광산배수는 폐광산에서 유출되는 산성광산배수에 다량 포함된 Fe, Al, Cu, Zn, Mn의 황산염을 이용하여 제조하였다. 실험은 5가지의 중금속에 대하여 초기 농도 30과 70 mg/L의 단일 및 혼합 시료를 이용하여 수행하였다. Fe와 Al은 각각 pH 4.0과 5.0에서 대부분 제거되었으며 그 외 중금속은 pH가 증가함에 따라 서서히 감소하였다. 단일 및 혼합 중금속 시료에 대한 pH 증가에 따른 농도 변화는 대체로 유사한 경향을 나타낸다. 수용액으로부터 중금속 제거 효과는 초기 농도와 관계없이 유사한 경향을 나타내고 pH 변화에 따라 확연한 차이를 나타낸다. X-선회절분석을 이용하여 침전물에 대한 광물 감정을 수행하였으며 pH가 증가함에 따라 결정도가 증가하는 경향을 나타낸다. 수용액 내에 중금속 농도가 감소하면서 생성되는 침전물은 Fe-침철석(FeOOH), Al-배사알루미나이트(Al4(SO4)(OH)10·4H2O), Cu-코넬라이트Cu19(OH)32(SO4)Cl4·3H2O)와 테놀라이트(tenorite: CuO), Zn-진사이트(ZnO), Mn-하우스마나이트(Mn3O4)이다.

동록안료의 재료과학적 특성 및 대기환경 영향 평가 (Material Scientific Properties and Effects on Atmospheric Environment of Copper Rust Pigments)

  • 박주현;김명남;박세린;유지아;김수경;이선명
    • 광물과 암석
    • /
    • 제33권4호
    • /
    • pp.361-376
    • /
    • 2020
  • 전통 회화 및 단청용 채색 안료 중 녹색을 표현하기 위해 사용된 동록안료의 재료과학적 특성 및 안정성을 알아보기 위하여 염화동(Atacamite), 초산동(Verdigris) 2종의 안료를 이용하여 평가를 진행하였다. 구성광물 분석 결과, K-AA는 아타카마이트(Atacamite)가 주요 구성광물로 천연 광물성 재료로 확인되고 K-VA는 호가나이트(Hoganite)로 확인되었다. 동록안료의 안정성을 저해하는 요인을 찾고자 UV 노출, CO2/NO2 가스부식 및 염수분사 시험 등의 분석을 실시하였다. 색상 안정성을 가장 크게 저해하는 요인은 두 안료 모두 염수분사 시험으로 시료 표면에 염생성물이 생성되어 변질되는 등 손상이 가중되었다. 또한 대기오염물질인 NO2의 영향도 두 안료 모두 육안으로 인지될 정도로 색이 변하여 주요 손상 요인으로 작용되는 것으로 판단된다. 특히 K-VA의 경우 K-AA와는 달리 UV 노출 평가 후 녹색에서 흑색으로 변하면서 본래의 색상을 완전히 잃어리는 것으로 K-VA의 주성분인 Hoganite가 UV 노출 후 Tenorite로 물질이 변했기 때문으로 판단된다. 두 안료의 대기환경 영향 평가 결과, K-AA에 비해 K-VA이 대기환경 영향에 상대적으로 취약한 모습을 보였다.

Solid-Phase Speciation of Copper in Mine Wastes

  • Jeong, Jae-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권2호
    • /
    • pp.209-218
    • /
    • 2003
  • Ecosystems in the Keweenaw Peninsula region of Lake Superior, USA, were disturbed by over 500 million tons of copper-rich mine tailings during the period 1850-1968. Metals leaching from these mine residues have had dramatic effects on the ecosystems. Vast acreages of exposed tailings that are over 100 years old remain unvegetated because of the combination of metal toxicity, absence of nutrients, and temperature and water stress. Therefore, it is important to characterize and fractionate solid copper phases for assessing labile forms of copper in soils and sediments contaminated by the mining wastes. X-ray diffraction analyses indicate that calcite, quartz, hematite, orthoclase, and sanidine minerals are present as major minerals, whereas cuprite,tenorite, malachite, and chalcopyrite might be present as copper minerals in the mining wastes. Sequential extraction technique revealed that carbonate and oxide fractions were the largest pools of copper (ca. 50-80%) in lakeshore and wetland stamp sands whereas the organic matter fraction was the largest reservoir (ca. 32%) in the lake sediments. The concentrations of iron and copper were inversely correlated in the oxide fraction suggesting that copper may occur as a surface coating on iron oxides. As particle size and water contents decrease, the percent of the copper bound to the labile carbonate fraction increases.

Surface Treatment Technology for Metal Corrosion Layer Focusing on Copper Alloy

  • Yang, Eun-Hee;Han, Won-Sik;Choi, Kwang-Sun;Lee, Young-Hoon;Ham, Chul-Hee;Hong, Tae-Kee
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.176-182
    • /
    • 2014
  • Using alkali treatment solution, neutrality treatment solution and acid treatment solution, the surface corrosion layer of copper plates and bronze plates that have been artificially corroded using HCl, $H_2SO_4$ and $HNO_3$ solutions were removed. In the case of alkali treatment solution, only air oxidation in the form of black tenorite and white cuproous chloride remained without being removed. In the case of using a neutrality treatment solution, a anhydrous type layer of reddish brown cupric chloride remained without being removed, together with this black and white corrosion substance. In the case of using an acid treatment solution, this red corrosion substance also remained, but all of the oxide was removed on the surface of the specimen that was treated by alternatively using alkali treatment solution and acid treatment solution. In the case of this treatment solution with the order of alkali-acid, oxidation no longer proceeded only through the distilled water cleaning process after treatment, thereby showing that oxidation from the cleaning solution no longer proceeded.

동(Cu) 및 동합금(Bronze)의 부식생성물과 탈염처리 (Corrosion Products and Desalting Treatments of Copper and Copper Alloy (Bronze))

  • 김상범;김현철;박형호
    • 한국재료학회지
    • /
    • 제20권2호
    • /
    • pp.82-89
    • /
    • 2010
  • Benzotriazole (B.T.A) which has been mainly used for the stabilization processing method of excavated copper and bronze artifacts is vaporized within 2~3 years after the usage because it is unstable at the acid conditions and cannot protect the surface of artifacts. In this study, NaOH method which has been used for the steel artifacts was applied as a stabilization process for the method of copper and bronze artifacts to gush chlorine ion out. For the reproduction of excavated samples, copper and bronze plates were dipped in 0.1M HCl for 26 hrs to form CuCl, rusted at $70^{\circ}C$ with RH 75% for the formation of corrosion products, and desalted in 0.1 M NaOH solution. The concentration of chlorine ion was measured by using ionchromatography. During the desalting process, a large quantity of chlorine ions was gushed out in early period and corrosion products were not additionally generated through the re-corrosion experiment. This NaOH desalting process was found to be a method of stabilization process for copper and bronze artifacts from the formation of Tenorite (CuO) during desalting as a protection layer for corrosion.

청동 조형물의 인공 파티나 제거를 위한 Nd:YAG 레이저 적용 실험 연구 (Experimental Study for Removing Artificial Patinas of Bronze Sculpture by Nd:YAG Laser Cleaning System)

  • 박창수;조남철
    • 한국표면공학회지
    • /
    • 제46권5호
    • /
    • pp.197-207
    • /
    • 2013
  • In the midst of increasing importance of modern cultural assets, especially, most modern bronze objects are exposed to outdoor environment, and as the objects are corroded steadily due to environmental factors the objects lost their original colors on the surface. We performed artificial patinas on the bronze sample per each color of red, black and green and checked cuprite and tenorite which are detected from actual bronze corrosion by analyzing the components. In addition, we applied the existing corrosion removal methods of grinder and sand blaster on a similar sample of bronze mirror per injection pressure and performed comparative analysis on the result with Nd:YAG laser. As a result of Nd:YAG laser cleaning artificial patina from bronze samples, all of the patinas were removed by laser wavelength 1064 nm better than 532 nm. Upon applying to a similar sample of bronze mirror, the artificial patina could be selectively removed from substrates without surface damage when Nd:YAG laser was conducted other than the existing removal method, and so it showed the possibility of application.

Vertically aligned cupric oxide nanorods for nitrogen monoxide gas detection

  • Jong-Hyun Park;Hyojin Kim
    • 한국표면공학회지
    • /
    • 제56권4호
    • /
    • pp.219-226
    • /
    • 2023
  • Utilizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate relevant gas sensors by means of potential enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned cupric oxide (CuO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a CuO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Cu metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the CuO nanorods array of the single monoclinic tenorite crystalline phase. From gas sensing measurements for the nitrogen monoxide (NO) gas, the vertically aligned CuO nanorod array is observed to have a highly responsive sensitivity to NO gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO at 200 ℃ and a low NO detection limit of 2 ppm in dry air. These results along with a facile fabrication process demonstrate that the CuO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO gas sensors.

동성광산(東星鑛山)의 지질(地質)과 광상(鑛床), 시추결과(試錐結果)를 중심(中心)하여 (On the Geology, Ore Deposit and Drilling Summary of Dongsung Copper Mine)

  • 김정택
    • 자원환경지질
    • /
    • 제5권3호
    • /
    • pp.133-144
    • /
    • 1972
  • The mine of our present concern is situated at Shim-ri, Gusan-myon, Changwon-gun, Kyongsang-namdo, with lattitude $128^{\circ}35^{\prime}{\sim}36^{\prime}N$ and longitude $35^{\circ}03^{\prime}{\sim}04^{\prime}E$. This mine has not been noticed until the intermittent geological survey for the ore deposits were initiated from September, 1967 till 1970. The main mineralized zones, No.1 and No.2 zones, were studied by the diamond drilling of 9 holes down to the total depth of 1,140m, and found to have ore reserves of Cu 1.99% ore, estimated to reach around $358,000{\frac{M}{T}}$ (proved $117,000{\frac{M}{T}}$, indicated $241,000{\frac{M}{T}}$), which triggered the new exploitation of this mine. Geological composition of the district near the mine is mainly from the andesite belonging to the Silla Series of Kyongsang System and the distribution is broadly spread. Ore deposits are the hydrothermal one, filling the shear zone formed alongside the andesite main joint. There are two stripes of copper bearing mineralized zone which are about 40~70 meters apart and parallel to each other, in addition to which two others are expected. The strike of the main mineralized zone lies at $N15^{\circ}{\sim}20^{\circ}W$, the dip at $60^{\circ}{\sim}70^{\circ}NE$. The principal components of the ore mineral are chalcopyrite, bornite and as secondary, cuprite, tenorite, azurite and malachite. Pyrite, magnetite, specular hematite, very little of galena, sphalerite, quartz, epidote, zoisite, chlorite and calcite are found as gangue mineral. Confirmed by the drilling, the main mineralized zone, No.1 zone, has the length of 320m, average width of 1.62m, Ag 26g/t, Cu 1.84% and the average width of the ore zone except the narrow barren andesite horse interposed in the mineralized zone is 1.32m with Ag 32g/t and Cu 2.26%. The mineralized zone No.2 is 340m long, 1.00m wide with Ag 30g/t and Cu 2.15%. Neglecting the barren andesite horse the width is 0.73m with Ag 42g/t and Cu 2.94%.

  • PDF