• 제목/요약/키워드: Ten-eleven Translocation 1 (Tet1)

검색결과 5건 처리시간 0.023초

DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases

  • Nair, Varun Sasidharan;Song, Mi Hye;Ko, Myunggon;Oh, Kwon Ik
    • Molecules and Cells
    • /
    • 제39권12호
    • /
    • pp.888-897
    • /
    • 2016
  • Stable expression of Foxp3 is ensured by demethylation of CpG motifs in the Foxp3 intronic element, the conserved non-coding sequence 2 (CNS2), which persists throughout the lifespan of regulatory T cells (Tregs). However, little is known about the mechanisms on how CNS2 demethylation is sustained. In this study, we found that Ten-Eleven-Translocation (Tet) DNA dioxygenase protects the CpG motifs of CNS2 from re-methylation by DNA methyltransferases (Dnmts) and prevents Tregs from losing Foxp3 expression under inflammatory conditions. Upon stimulation of Tregs by interleukin-6 (IL6), Dnmt1 was recruited to CNS2 and induced methylation, which was inhibited by Tet2 recruited by IL2. Tet2 prevented CNS2 re-methylation by not only the occupancy of the CNS2 locus but also by its enzymatic activity. These results show that the CNS2 methylation status is dynamically regulated by a balance between Tets and Dnmts which influences the expression of Foxp3 in Tregs.

Ten-eleven translocation 1 mediating DNA demethylation regulates the proliferation of chicken primordial germ cells through the activation of Wnt4/β-catenin signaling pathway

  • Yinglin Lu;Ming Li;Heng Cao;Jing Zhou;Fan Li;Debing Yu;Minli Yu
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.471-480
    • /
    • 2024
  • Objective: The objective of this study was to investigate the regulation relationship of Ten-eleven translocation 1 (Tet1) in DNA demethylation and the proliferation of primordial germ cells (PGCs) in chickens. Methods: siRNA targeting Tet1 was used to transiently knockdown the expression of Tet1 in chicken PGCs, and the genomic DNA methylation status was measured. The proliferation of chicken PGCs was detected by flow cytometry analysis and cell counting kit-8 assay when activation or inhibition of Wnt4/β-catenin signaling pathway. And the level of DNA methylation and hisotne methylation was also tested. Results: Results revealed that knockdown of Tet1 inhibited the proliferation of chicken PGCs and downregulated the mRNA expression of Cyclin D1 and cyclin-dependent kinase 6 (CDK6), as well as pluripotency-associated genes (Nanog, PouV, and Sox2). Flow cytometry analysis confirmed that the population of PGCs in Tet1 knockdown group displayed a significant decrease in the proportion of S and G2 phase cells, which meant that there were less PGCs entered the mitosis process than that of control. Furthermore, Tet1 knockdown delayed the entrance to G1/S phase and this inhibition was rescued by treated with BIO. Consistent with these findings, Wnt/β-catenin signaling was inactivated in Tet1 knockdown PGCs, leading to aberrant proliferation. Further analysis showed that the methylation of the whole genome increased significantly after Tet1 downregulation, while hydroxyl-methylation obviously declined. Meanwhile, the level of H3K27me3 was upregulated and H3K9me2 was downregulated in Tet1 knockdown PGCs, which was achieved by regulating Wnt/β-catenin signaling pathway. Conclusion: These results suggested that the self-renewal of chicken PGCs and the maintenance of their characteristics were regulated by Tet1 mediating DNA demethylation through the activation of Wnt4/β-catenin signaling pathway.

Ascorbic acid increases demethylation in somatic cell nuclear transfer embryos of the pig (Sus scrofa)

  • Zhao, Minghui;Hur, Tai-Young;No, Jingu;Nam, Yoonseok;Kim, Hyeunkyu;Im, Gi-Sun;Lee, Seunghoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.944-949
    • /
    • 2017
  • Objective: Investigated the effect and mechanism of ascorbic acid on the development of porcine embryos produced by somatic cell nuclear transfer (SCNT). Methods: Porcine embryos were produced by SCNT and cultured in the presence or absence of ascorbic acid. Ten-eleven translocation 3 (TET3) in oocytes was knocked down by siRNA injection. After ascorbic acid treatment, reprogramming genes were analyzed by realtime reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, relative 5-methylcytosine and 5-hydroxymethylcytosine content in pronucleus were detected by realtime PCR. Results: Ascorbic acid significantly increased the development of porcine embryos produced by SCNT. After SCNT, transcript levels of reprogramming genes, Pou5f1, Sox2, and Klf were significantly increased in blastocysts. Furthermore, ascorbic acid reduced 5-methylcytosine content in pronuclear embryos compared with the control group. Knock down of TET3 in porcine oocytes significantly prevents the demethylation of somatic cell nucleus after SCNT, even if in the presence of ascorbic acid. Conclusion: Ascorbic acid enhanced the development of porcine SCNT embryos via the increased TET3 mediated demethylation of somatic nucleus.

TET2 Promoter DNA Methylation and Expression in Childhood Acute Lymphoblastic Leukemia

  • Bahari, Gholamreza;Hashemi, Mohammad;Naderi, Majid;Taheri, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권8호
    • /
    • pp.3959-3962
    • /
    • 2016
  • The ten-eleven-translocation-2 (TET2) gene is a novel tumor suppressor gene involved in several hematological malignancies of myeloid and lymphoid origin. Besides loss-of-function mutations and deletions, hypermethylation of the CpG island at the TET2 promoter has been found in human cancers. The TET2 encoded protein regulates DNA methylation. The present study aimed to examine DNA promoter methylation of TET2 in 100 childhood acute lymphoblastic leukemia (ALL) cases and 120 healthy children in southeast Iran. In addition, mRNA expression levels were assessed in 30 new cases of ALL and 32 controls. Our ndings indicated that promoter methylation of TET2 signi cantly increases the risk of ALL (OR=2.60, 95% CI=1.31-5.12, p=0.0060) in comparison with absent methylation. Furthermore, the TET2 gene was signi cantly downregulated in childhood ALL compared to healthy children (p=0.0235). The results revealed that hypermethylation and downregulation of TET2 gene may play a role in predisposition to childhood ALL. Further studies with larger sample sizes and different ethnicities are needed to con rm our ndings.

Vitamin C enhances the expression of IL17 in a Jmjd2-dependent manner

  • Song, Mi Hye;Nair, Varun Sasidharan;Oh, Kwon Ik
    • BMB Reports
    • /
    • 제50권1호
    • /
    • pp.49-54
    • /
    • 2017
  • Previously, we reported that vitamin C facilitates the CpG demethylation of Foxp3 enhancer in $CD4^+Foxp3^+$ regulatory T cells (Tregs) by enhancing the activity of a DNA demethylase ten-eleven-translocation (Tet). However, it is not clear whether vitamin C affects other helper T cell lineages like T helper type 17 (Th17) cells which are related with Tregs. Here, we show that the expression of interleukin-17A (IL17) increases with the treatment of vitamin C but not with other antioxidants. Interestingly, the upregulation of IL17 was not accompanied by DNA demethylation in Il17 promoter and was independent of Tet enzymes. Rather, vitamin C reduced the trimethylation of histone H3 lysine 9 (H3K9me3) in the regulatory elements of the Il17 locus, and the effects of vitamin C were abrogated by knockdown of jumonji-C domain-containing protein 2 (jmjd2). These results suggest that vitamin C can affect the expression of IL17 by modulating the histone demethylase activity.