• Title/Summary/Keyword: Temporary earth retaining structures

Search Result 20, Processing Time 0.023 seconds

The Development and Application of KOESWall System (분리형 보강토 옹벽의 개발 및 적용사례)

  • 김영윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.323-328
    • /
    • 2001
  • In the ordinary reinforced earth wall, which was constructed by incremental construction method, the horizontal deformation of the facing due to the compaction induced horizontal earth pressure was unavoidable. Thus the KOESWall system which are adopted the isolated construction method was developed by I&S Eng. Co., Ltd. in 1999. Due to its systematical feature, KOESWall system is able to minimizes the horizontal deformation of reinforced wall effectively and it can be used as temporary structures more economically without the lacing block. In this report, it is shown that the concept and case histories of KOESWall system as a retaining structures.

  • PDF

Stability Evaluation of Earth Retaining Structure using Tower Truss System (새로운 무지보 흙막이 공법의 안정성 평가)

  • Kim, Young-Seok;Kim, Ju-Hyong;Kim, Young-Nam;Kim, Seong-Hwan;Lee, Sung-Reol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1324-1329
    • /
    • 2009
  • Needs for underground space development and utilization have been increasing in urban area. The conventional strutting method in excavation is effective to restrain the ground movements and displacements of earth structures but inefficient for workers because of small working space. The conventional earth reinforcement methods such as earth-anchor and soil-nailing also have limitation to apply in urban area due to threats to stability of adjacent buildings around excavation boundaries. Recently, many types of earth retaining structures are being developed to overcome disadvantages of conventional excavation methods in urban area. In this study, a series of numerical analyses were performed with MIDAS GTS, geotechnical analysis program and MIDAS Civil, structural analysis design program to evaluate behavior and stability of the new type of non-supporting earth retaining structure, called Temporary Tower System (TTS), consisting of tower truss structures with much economical and spatial advantage.

  • PDF

A Case Study on the Self-Supported Earth Retaining Wall with Different Formations (다양한 형태의 2열 자립식 흙막이 공법 시공사례 연구)

  • Sim, Jae-Uk;Kim, Kyoung-Chul;Son, Sung-Gon;Park, Young-Jin;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1039-1049
    • /
    • 2010
  • Excavation support systems are the temporary earth retaining structures that can prevent the lateral movement of soils. The systems are initially performed before other construction operations and have a great impact on the entire construction period. The temporary support system in Korea have been carried out generally along with installing supports, which are struts, tiebacks, and rakers. However, most of existing support systems in application relatively have limitations such as cost increase, construction configuration, and displacement occurred with support systems. Thus, a new retaining support system (referred to as the SSR, New Construction Technology No. 533) was developed to solve the aforementioned problems. This study introduces the design, construction, and maintenance of the SSR system under the different construction conditions. The behavior and characteristics of the SSR system were identified based on the case studies.

  • PDF

The Application of KOESWall System as a Temporary Structure (임시구조물로서 분리형 보강토 옹벽의 적용사레)

  • 김영윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.53-58
    • /
    • 2000
  • The KOESWall system that minimizes the horizontal deformation of reinforced wall effectively was developed bt E&S Eng. Co., Ltd. in 1999. Due to its systematical feature i.e. isolated construction method. KOESWall system is able to use as temporary structures more economically without the facing block. In this report, it is shown that the case history of KOESWall as a temporary soil retaining structure and the field measuremnets.

  • PDF

A study on the Remote Control System for Measuring Gradient of temporary earth retaining structure (흙막이 가시설 구조물의 무선원격계측관리시스템에 관한 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Kim, Sang-Won;Seo, Yong-Chil;Shin, Chan-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.49-52
    • /
    • 2011
  • This study concerned with the retention structures or inverted temporary building for displacement measurement in the underground soil after drilling a vertical tilt sensor attached to the vertical distance required to maintain a real-time measurement and management in order to install the wireless measuring devices installed in the field through remote control and management program for the safety of retaining structures temporary building be found on the internet in real time temporary building the retention is to develop a safety management system. And based on this technology to monitor the future status of the various structures possible to add a variety of sensors and Life Cycle Prediction of the structure and needs to evolve into intelligent systems and wireless networks using wireless communications infrastructure systems based on expanding domestic market penetration by developing instrumentation pioneer in overseas markets as well as the activation can also be judged.

  • PDF

Design Optimization of Earth Retaining Walls Using the Taguchi Method (다구찌 기법을 활용한 흙막이 가설공법 최적설계 방안)

  • Moon, Sungwoo;Kim, Sungbu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Temporary structures provide the accessible working area when building a permanent building structure in the construction operation. Executed in a natural environment, the temporary structure is prone to the external influence factors of underground water, soil conditions, etc. These factors should be carefully considered in designing the temporary structure. The objective of this study is to apply the external influence factors in designing a more reliable earth retaining wall. The research methodology is based on the Taguchi method that has been studied to improve product quality in the industry. An orthogonal array was developed to analyze the interaction between the external influence factors and the internal influence factors. A sample case study demonstrated that the Taguchi method can be used in planning a more reliable temporary structure for earth retaining walls.

Study on the Safety Assurance for the Temporary Structures (가설구조물 안전성 확보 방안 연구)

  • Lee, Jung Seok;Moon, Seong Oh;Youn, Ye Bin;Lim, Nam Gi;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.73-80
    • /
    • 2018
  • According to the statistics publication of KOSHA, more than half of serious accidents at the construction sites were related to the temporary works and/or the temporary structures such as scaffoldings, shores, earth retaining walls, etc. The structural failures are occurred because of the overload acting on the structures or lack of performance of the one or more members of the structures. For the prevention of the collapse accidents relating to the temporary structures at the construction sites, we have to control construction processes not to occur the overload and also to control the performance and quality of each member of the temporary structures. MOLIT has amended the "Construction Technology Promotion Act" on Jan. 7th, 2015 to ensure the structural safety of the temporary structures. According to the Act, the designers of the construction design projects should check the structural integrity of the structures including the temporary structures and the construction companies have to let 'the Relative Professionals' confirm the structural integrity of temporary structures, the shores(${\geq}5m$ high) and the scaffolds(${\geq}31m$ high), before construction. Also, MOLIT has amended the "Regulation for Construction Technology Promotion Act" on Jul. 4th, 2016 for quality management and testing of temporary equipments. According th this regulation, the construction companies and supervisors should manage and test the temporary equipments before using them. In this paper, the standard drawings of the shores(< 5 m high) and the scaffolds(< 31 m high) and the amended "Business Guideline for Quality Management of Construction Work" are presented. As the result of this study, MOLIT noticed the amended "Business Guideline for Quality Management of Construction Work" on Jul. 1st, 2017.

Analysis of the Correlation between the velocity speed of High-Speed Railways and the Suppressing Effect of lateral Displacement of retaining wall according to the Arrangement of Stabilizing Piles (억지말뚝의 배치에 따른 흙막이의 수평변위 억제효과와 고속철도의 속도와의 상관성 분석)

  • Son, Su-Won;Im, Jong-Chul;Seo, Min-Su;Hong, Seok-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In urban areas, structures are installed deep underground in the lower part of the structure to utilize space. Therefore, a retaining wall is used to prevent earth pressure from the ground when constructing a structure. Due to the development of construction technology, retaining wall applied to excavation work are used to prevent danger such as falling rocks and landslides in temporary facilities when construction or retaining walls are installed. In general, the application of a retaining wall to a temporary facility during the embankment construction is the case of expanding an existing roads or railways. Therefore, it is necessary to study the retaining wall applied to the embankment construction such as the double-track site of the high-speed railway. In this study, two types of common one row H-pile retaining wall and two types of IER retaining wall were analyzed, and the stability of the retaining wall applied to the construction of double-track of the high-speed railway was analyzed. The earth retaining wall is a construction method that combines forced pile applied to the stabilization of the slope with the wall of the earth retaining wall. As a result of the analysis, the IER retaining wall had maximum lateral displacement of 19.0% compared to the type with H-plie installed only in the front while dynamic load was applied. In addition, the slower the speed of high-speed railway, the more displacement occurred, and the results show that more caution is needed when designing the ground in low-speed sections.

An Experimental Study on Compressive Loading Capacity of Precast Concrete Truss System (프리캐스트 콘크리트 트러스 시스템의 압축 내하력 실험 연구)

  • Han, Man-Yop;Jeon, Se-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.889-900
    • /
    • 2013
  • In a large scale of excavation for the foundation of large-sized structures and underground structures, a considerable amount of earth pressure can occur. Steel beams that have been used to form a temporary structure to support earth pressure may be less economical and less efficient in resisting the high earth pressure. To cope with this problem, PCT(Precast Concrete Truss) system has been devised and investigated both experimentally and analytically. A proper connection method between the concrete truss members was proposed to accommodate fast assembly and disassembly. Full-scale test of PCT system was performed to verify the load-carrying capacity of the PCT system including the connections. The test results were compared with those of structural analysis. The test specimen which corresponds to PCT strut attained the ultimate load without buckling, but the detail of connector members needs to be improved. It is expected that precast concrete truss members can be efficiently incorporated into a temporary structure for deep and large excavation by replacing conventional steel beams.

Proposal of Mobilized Passive Earth Pressure to Allowable Wall Displacement and Movement Types in Sandy Soil (벽체 허용변위와 양상을 고려한 사질토지반에서 수동측토압 제안)

  • Yoon, Young-Ho;Kim, Tae-Hyung;Kim, Tae-O;Woo, Min-seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.5-15
    • /
    • 2023
  • The evaluation of passive earth pressure plays a crucial role in the design of earth-retaining structures such as retaining walls and temporary earth-retaining walls to withstand horizontal earth pressure. In the earth pressure theory, active and passive earth pressures represent the earth pressures at the limit state, where the wall displacement reaches the maximum allowed displacement. In the design of earth-retaining structures, the passive earth pressure is considered as the resisting force. In this context, the limit displacement at which passive earth pressure occurs is significantly greater than that associated with the active earth pressure. Therefore, it is irrational to apply this displacement directly to the calculation of passive earth pressure. Instead, it is necessary to consider the mobilized passive earth pressure exerted at the allowable horizontal displacement to evaluate the structural stability. This study proposes an allowable wall displacement, denoted as 0.002 H (where H represents the excavation depth), based on a literature review that focuses on sandy soils. To calculate the mobilized passive earth pressure from the wall displacement, a semi-empirical equation is proposed. By analyzing the obtained data on mobilized passive earth pressure, a reduction factor applicable to Rankine's passive earth pressure is proposed for practical application in sandy soils under different wall movement types.