• Title/Summary/Keyword: Temporary cement

Search Result 55, Processing Time 0.024 seconds

AN EXPERIMENTAL STUDY ON MARGINAL LEAKAGE OF THE DENTAL PERMANENT CEMENTS AFFECTED BY THE TEMPORARY CEMENTS (치과용 임시합착 Cement가 영구합착 Cement의 변연누출에 미치는 영향에 관한 실험적 연구)

  • Lee, Hyeog;Lee, Ho-Yong
    • The Journal of the Korean dental association
    • /
    • v.22 no.4 s.179
    • /
    • pp.313-322
    • /
    • 1984
  • This study was designed to observe the marginal leakage of three permanent cements affected by three temporary cements. The temporary cements used in this study were Zinc oxide-eugenol, Non-eugenol, and Calcium hydroxide cements and the permanent cements were Zinc phosphate, Polycarboxylate and Alumina reinforced EBA cements. To measure the dye penetration into permanently cemented zone, the experimental specimens were treated with the temporary cements for a week. An analysis of the data obtained from 120 specimens resulted in the following conclusions: 1. Regardless of the types of the permanent cements used, using Calcium hydroxide cement as temporary cement showed higher marginal leakage than other temporary cements. 2. Using Polycarboxylate cement as permanent cement showed less marginal leakage than other permanent cements. 3. The marginal leakage in zinc phosphate cement was similar to Alumina reinforced EBA cement regardless of the types of the temporary cements.

  • PDF

THE EFFECT OF TEMPORARY CEMENT AND DESENSITIZER ON THE BOND STRENGTH OF LUTING CEMENTS (접착용 시멘트의 결합강도에 임시 접착제와 탈감작제가 미치는 영향)

  • Sun Se-Na;Yang Hong-So;Park Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.335-343
    • /
    • 2002
  • This study investigated the effect of temporary cement and desensitizer on the bond strength of luting cements. Total 96 dentin specimens were divided into two groups with and without temporary cementation. For temporary cement-tread group, specimens were cemented with $Temp-bond^{(R)}$ and all specimens were stored in distilled water at $37^{\circ}C$ for 7 days. Each cup was further divided into 3 subgroups with $Gluma^{(R)},\;One-step^{(R)}$ application and without desensitizer After desensitizer application, Ni-Cr specimens were luted to dentin surface with $Panavia-F^{(R)}$ and $Vitremer^{(R)}$ Specimens were placed in distilled water at $37^{\circ}C$ for 24 hours and shear bond strength between metal and dentin was measured by a universal testing machine. The results were as follows : 1. In $Panavia-F^{(R)}$ cemented groups, the combination of $One-step^{(R)}$ without temporary cement showed the greatest strength. Among the desensitizer types, $One-step^{(R)}$ showed the highest bond strength, followed by No-desensitizer, $Gluma^{(R)}$. 2. In $Vitremer^{(R)}$ cemented groups, the combination of no temporary cement and without desensitizer showed the greatest bond strength. Among the desensitizer types, No-desensitizer group showed the highest bond strength. 3. The use of $Gluma^{(R)}$ significantly reduced the shear bond strength in $Panavia-F^{(R)}$ and $Vitremer^{(R)}$ groups. 4. All temporary cement-treated groups showed a significant lower shear bond strength than without temporary cement groups. 5. Desensitizer application significantly influenced the bond strength of the resin cement and resin modified glass ionomer cement.

EFFECT OF TEMPORARY CEMENT ON TENSILE BOND STRENGTH OF DENTIN BONDING AGENT (Temporary Cement가 상아질 접착제의 접착성능에 미치는 영향)

  • Chang, Heon-Soo;Cho, Kyeu-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.685-698
    • /
    • 1995
  • This study was conducted to the effect of temporary cement on the adhesiveness of dentin bonding agent to dentin surface. One hundred freshly extracted bovine mandibular incisors were grinded to expose flat labial dentin surface. The dentin surfaces were temporarized with either eugenol-containing temporary cement(TemBond and Zinc Oxide Eugenol cement) or non-eugenol temporary cement(Nogenol and TempBond NE) for 7days, and then the temporarization was removed with surgical currette and the exposed dentin surfaces were water-rinsed. Bonding specimens were made by use of All-Bond 2 and Super-Bond C&B dentin bonding agent, and stored in $37^{\circ}C$ distilled water for 24hours. The tensile bond strenth and the cohesive failure rate were measured, and then the pretreated dentin surfaces which the temporary cement had been applied to and removed from and the fractured dentin surfaces after bonding test were examined under scanning electron microscope. The results were as follows : In case of bonding with All-Bond 2, tensile bond strength of each experimental group was lower than that of the control group(p<0.05), but there was no significant difference between the bond strengths of the control group and each experimental group in case of bonding with Super-Bond C&B(p>0.05). No significant difference between tensile bond strength of experimental group, whether temporary cement contains eugenol or not, was seen(p>0.05). In case of bonding with All-Bond 2, the control group showed cohesive-adhesive mixed failure mode and the experimental groups mainly showed adhesive failure mode, but in case of bonding with Super-Bond C&B, almost of the control and the experimental groups mainly showed cohesive failure mode. On SEM examination, all of the dentin specimens pretreated with either 10 % phosphoric acid or 10% citric acid after application of the temporary cements demonstrated remnants of temporary cement attached to dentin surface.

  • PDF

PULP REACTIONS TO TEMPORARY CEMENTS (임시(臨時) 접착용(接着用) 씨멘트가 치수조직(齒髓組織)에 미치는 영향(影響))

  • Yoon, Doo-Joong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.15 no.1
    • /
    • pp.43-47
    • /
    • 1977
  • The purpose of this study was to determine human pulp reactions to temporary cements such as zinc oxide-eugenol cement, modified zinc oxide-eugenol cement (Cavitec) and calcium hydroxide cement (Dycal). Deep class V cavities were prepared in the human teeth with ultrahigh-speed handpiece operating at a free running speed of 300,000 r.p.m., using # 701 bur and water spray coolant. The cavities were flushed with water, dried with cotton pellets and filled with zinc oxide-eugenol cement, modified zinc oxide-eugenol cement and calcium hydroxide cement respectively. The teeth were divided into two groups, which one group was extracted after One day and the other was extracted after seven days. The samples were examined with microscope and the findings were as follows; 1. The pulp reactions to temporary cements were generally mild. Among them the reactions were moderate in zinc oxide-eugenol cement and, slight in calcium hydroxide cement. 2. Calcium hydroxide cement may be used properly as temporary cement for the purpose of pulp protection.

  • PDF

The selection criteria of temporary or permanent luting agents in implant-supported prostheses: in vitro study

  • Alvarez-Arenal, Angel;Gonzalez-Gonzalez, Ignacio;deLlanos-Lanchares, Hector;Brizuela-Velasco, Aritza;Ellacuria-Echebarria, Joseba
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • PURPOSE. The use of temporary or permanent cements in fixed implant-supported prostheses is under discussion. The objective was to compare the retentiveness of one temporary and two permanent cements after cyclic compressive loading. MATERIALS AND METHODS. The working model was five solid abutments screwed to five implant analogs. Thirty Cr-Ni alloy copings were randomized and cemented to the abutments with one temporary (resin urethane-based) or two permanent (resin-modified glass ionomer, resin-composite) cements. The retention strength was measured twice: once after the copings were cemented and again after a compressive cyclic loading of 100 N at 0.72 Hz (100,000 cycles). RESULTS. Before loading, the retention strength of resin composite was 75% higher than the resin-modified glass ionomer and 2.5 times higher than resin urethane-based cement. After loading, the retentiveness of the three cements decreased in a non-uniform manner. The greatest percentage of retention loss was shown by the temporary cement and the lowest by the permanent resin composite. However, the two permanent cements consistently show high retention values. CONCLUSION. The higher the initial retention of each cement, the lower the percentage of retention loss after compressive cyclic loading. After loading, the resin urethane-based cement was the most favourable cement for retrieving the crowns and resin composite was the most favourable cement to keep them in place.

The Effect of Temporary Cement Cleaning Methods on the Retentive Strength of Cementation Type Implant Prostheses (임시 시멘트 제거방법이 시멘트 유지형 임플란트 보철물의 유지력에 미치는 영향)

  • Shin, Hwang-Kyu;Song, Young-Gyun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.125-140
    • /
    • 2011
  • The remnant of temporary cement on the intaglio surface of cast restoration may have a negative effect on the retentive strength of permanent cement. This study was to evaluate the effect of temporary cement cleaning methods on the retentive strength of cementation type implant prostheses. Prefabricated implant abutments - height 5.5mm, diameter 4.5mm, 6 degree axial wall taper with chamfer margins were used. Forty copings-abutment specimens were divided into four groups(each n=10) according to the cleaning methods for temporary cement(Temp-$Bond^{(R)}$) as follows : no temporary cementation(the control group), orange solvent, ultrasonic cleaning, air borne-particle abrasion. After the application of temporary cement and the separation, the cleaning procedure was performed according to the protocol of each group. The specimens were cemented with $Premier^{(R)}$ Implant $Cement^{TM}$. After the permanent cementation, the specimens were subjected to thermocycling and pulled out from the specimens with a universal testing machine at a cross-head speed of 0.5mm/min. After the retentive strength test, all the specimens were cleaned using ultrasonic cleaning, abraded with air borne-particles, and steam-cleaned. Likewise, the specimens were temporarily cemented(Temp-$Bond^{(R)}$ NE), cleaned according to the protocol of each group, cemented with $Premier^{(R)}$ Implant $Cement^{TM}$ and subjected to thermocycling and measurement of their retentive strength. The mean of group with orange solvent were significantly lower than those of other groups(p<0.05). There was no significance between group with ultrasonic cleaning and group with air borne-particle abrasion. Group with ultrasonic cleaning and group with air-particle abrasion were no significance at control group. There was no significance between group cemented with Temp-$Bond^{(R)}$ and group cemented with Temp-$Bond^{(R)}$ NE. Within the limitation of this study, it can be concluded that the temporary cement cleaning method with only orange solvent may have a negative effect on the retentive strength of permanent cement. Ultrasonic cleaning and air borne-particle abrasion methods are recommended for the temporary cement cleaning method on cementation type implant prostheses.

Resin Bond Strength of Lithium Disilicate Glass-Ceramic by Surface Cleansing Method after Temporary Cementation (임시접착 후, 치면세마에 따른 Lithium Disilicate Glass-Ceramic의 레진결합강도에 대한 연구)

  • Chung, Seung-Hwa;Lee, Jin-Han;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2007
  • purpose: This study was to evaluate the shear bond strength of Lithium Disilicate Glass-Ceramic by removable method of temporary cement on the abutment tooth. Material and Method: Sixty molar teeth of human with the occlusal surface up were mounted in acrylic resin blocks. The 45 specimens were prepared to exposure dentin by diamond bur and the eugenol-containing temporary cement($Cavitec^{TM}$ ($KERR^{(R)}$, U.S.A)was applied to the dentin surfaces. After initial removal of the cement with a dental explorer, the specimens were divided into 4 groups of 15 specimens each. The dentin surfaces of the specimens were treated by rotary instrument with as follow pastes: $Zircate^{(R)}$ prophy paste(Dentsply, U.S.A), Radent Prophy Paste(Pascal company,inc. U.S.A), and Dental pumice(Wip mix corporation,U.S.A). An adhesive resin luting agent(Variolink $II^{(R)}$, Ivoclar Vivadent, Leichtenstein) including Monobond-S and $Excite^{(R)}$ was applied to all specimens. The ceramic specimens were made with an A1 ingot of IPS Empress $II^{(R)}$ (Ivoclar Vivadent, Leichtenstein). After the specimens were stored in distilled water for 48hr, the shear bond strength(MPa) was measured by a Universal testing machine(Zwick 145641, Zwick, Germany) at a 1mm/min cross-head speed. The data were statistically analyzed by one-way ANOVA and Duncan's multiple range test. Results: In all group, there were no significant differences in comparison with the control group(p>0.05). The pattern of most failure showed the mixed type of cohesive and adhesive failure. Conclusion: Resin bond strength of IPS Empress $II^{(R)}$ was not affected by removal method of the temporary cement.

COMPARATIVE ANALYSIS OF MARGINAL MICROLEAKAGE IN VARIOUS TEMPORARY SEALING MATERIALS (근관와동 가봉재 종류에 따른 변연누출의 비교 분석)

  • Yun, Chang;Hong, Suck-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.151-157
    • /
    • 1991
  • The roles of temporary sealing materials used in endodontics are impotant Especially, its marginal sealing properties affect endodontic success and failure in endodontic treatment The purpose of this in vitro study was to compare and evaluate the marginal sealing properties of various temporary restorative materials used in endodontic access cavity by using electrochemical method. Standard endodontic access cavities were prepared in extracted human molar teeth and filled with Caviton, IRM, zinc oxide - eugenol cement. Each specimen was immersed in 1 % solution of KCl, and applied a potential of 9 V external power supply. Marginal microleakage and water sorption were measured for marginal sealing effect evaluation in comparison with each group. A comparative study of the obtained results have led to the following conclusions. 1. The Caviton group showed lower marginal microleakage value than the zinc oxide - eugenol cement and IRM group the 6 th day after. The IRM group showed lwoer marginal microleakage value than the zinc oxide - eugenol cement group from the 6 th day to the 12 th day. But there was no significant difference between zinc oxide - eugenol cement and IRM group after the 13 th day. 2. As time went by, marginal microleakage value was increased in Caviton, IRM and zine oxide - eugenol cement.

  • PDF

AN EXPERIMENTAL STUDY OF THE EFFECT OF TEMPORARY CEMENTS ON THE BOND STRENGTH OF PERMANENT CEMENTS (치과용 임시합착 시멘트가 영구합착 시멘트의 결합력에 미치는 영향에 관한 실험적 연구)

  • Lee, Jin-Ho;Lee, Ho-Yong;Han, Dong-Hoo
    • The Journal of the Korean dental association
    • /
    • v.22 no.9 s.184
    • /
    • pp.803-811
    • /
    • 1984
  • The purpose of this study was to research how temporary cementation effected on the bond strength of permanent cementation. Zinc phosphate, polycarboxylate and EBA ZOE cements were used as permanent cements, and as temporary cements Nogenol, Tempak and Dycal were used. The ninety six (96) specimens were prepared to measure the bond strength of permanent cements after treated with temporary cements for one week. The tensile stregths were measured with an Instron Universal Test Machine. The results of this study were obtained as follows: 1. With zinc phosphate cement, there was a tendency that the bond strengths of the group of temporarily cemented with Nogenol were increased, meanwhile they were decreased a little in the groups of Dycal and Tempak than those of the control group. 2. With polycarboxylate cement, there was a tendency that the bond strengths of the Control group were higher than those of experimental groups and they were decreased in order of Tempak, Noginol, and Dycal. 3. With EBA ZOE cement, there was a tendency that the bond strengths of the group of temporarily cemented with Tempak were increased a little, meanwhile they were decreased a little in the groups of Nogenol and Dycal than those of the Control group. 4. Among the permanent cements, the bond strengths of polycarbosylate cement were the highest and were followed in order of zinc phosphate cement and EBA ZOE cement.

  • PDF

Impact on Retrievability by Cement Variety for Implant Restorations Equipped with a Lingual Slot

  • Lee, Ji-Hong;Lee, Kyu-Bok
    • Journal of Korean Dental Science
    • /
    • v.11 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Purpose: The purpose of this study is to measure and compare the removal torques of different cements applied in attachments of zirconia restorations on titanium (Ti) abutments fitted with retrievable cement-type slot (RCS) on the lingual side for the better retrievablity by use of a slot driver. Materials and Methods: Three types of cements were used in the experiment: two permanent cements in $RelyX^{TM}$ U200 (RU) (3M ESPE) which is a resin cement and $FujiCem^{TM}$ (FC) (GC) which is a resin-modified glass ionomer cement, and a temporary cement in $Freegenol^{TM}$ temporary cement (TC) (GC). Measurements of removal torques were conducted as follows; an attached sample was fixed on the equipment customized for the experiment; a slot driver was connected to a MGT12 (Mark-10 Corp.), a torque measurement instrument; the sample had the driver fitted to its RCS and then was rotated until the it was removed; and finally, the maximum torque value was recorded. Result: As for the removal torque measurement results, the average values were $47.9{\pm}2.6Ncm$ for RU, $43.4{\pm}1.5Ncm$ for FC, and $20.9{\pm}1.0Ncm$ for TC. The statistical analysis using Kruskal-Wallis test yielded the significance probability of P<0.05 (P=0.002), which confirmed the presence of significant differences between the three groups. Conclusion: All three cements exhibit clinically acceptable levels of removal torque when applied to an upper zirconia implant restoration fitted with a lingual slot, with RU and FC, the two permanent cements, having the significantly higher values than that of TC, the temporary cement.