• Title/Summary/Keyword: Temporary Satellite Constellation

Search Result 3, Processing Time 0.021 seconds

Temporary Satellite Constellation Design for the Ground Reconnaissance Mission (지상 정찰을 위한 임시 위성군집궤도 설계)

  • Kim, Hae-Dong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1112-1120
    • /
    • 2009
  • In this paper, the authors introduced a new approach to find the target orbits of each satellite in order to establish a temporary reconnaissance constellation mission to minimize the average revisit time (ART) while satisfying the constraint on fuel limit. Two distinct problems are dealt with: the first is to reconnoiter the local area with discriminating fuel constraint the second is to reconnoiter ground moving target with same fuel constraint. A preliminary effort in applying a genetic algorithm to those problems has also been demonstrated through simulation study. The results show that current ARTs of each mission are reduced by 41% and 42%, respectively, by relocating the orbit of each satellite. Naturally, the final result may depend on satellite orbits, sensor characteristics, allowable fuel cost, thruster capability, and maneuver strategies.

Low Complexity QRD-M Detection Algorithm Based on Adaptive Search Area for MIMO Systems (MIMO 시스템을 위한 적응형 검색범위 기반 저복잡도 QRD-M 검출기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.97-103
    • /
    • 2012
  • A very low complexity QRD-M algorithm based on limited search area is proposed for MIMO systems. The conventional QRD-M algorithm calculates Euclidean distance between all constellation symbols and the temporary detection symbol at each layer. We found that performance will not be degraded even if we adaptively restrict the search area of the candidate symbols only to the neighboring points of temporary detection symbol according to the channel condition at each layer. As a channel condition indicator, we employ the channel gain ratio among the layers without necessity of SNR estimation. The simulation results show that the proposed scheme effectively achieves near optimal performance while maintaining the overall average computation complexity much smaller than the conventional QRD-M algorithm.

Damage Proxy Map over Collapsed Structure in Ansan Using COSMO-SkyMed Data

  • Nur, Arip Syaripudin;Fadhillah, Muhammad Fulki;Jung, Young-Hoon;Nam, Boo Hyun;Kim, Yong Je;Park, Yu-Chul;Lee, Chang-Wook
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.363-376
    • /
    • 2022
  • An area under construction for a living facility collapsed around 12:48 KST on 13 January 2021 in Sa-dong, Ansan-si, Gyeonggi-do. There were no casualties due to the rapid evacuation measure, but part of the temporary retaining facility collapsed, and several cracks occurred in the adjacent road on the south side. This study used the potential of synthetic aperture radar (SAR) satellite for surface property changes that lies in backscattering characteristic to map the collapsed structure. The interferometric SAR technique can make a direct measurement of the decorrelation among different acquisition dates by integrating both amplitude and phase information. The damage proxy map (DPM) technique has been employed using four high-resolution Constellation of Small Satellites for Mediterranean basin Observation (COSMO-SkyMed) data spanning from 2020 to 2021 during ascending observation to analyze the collapse of the construction. DPM relies on the difference of pre- and co-event interferometric coherences to depict anomalous changes that indicate collapsed structure in the study area. The DPMs were displayed in a color scale that indicates an increasingly more significant ground surface change in the area covered by the pixels, depicting the collapsed structure. Therefore, the DPM technique with SAR data can be used for damage assessment with accurate and comprehensive detection after an event. In addition, we classify the amplitude information using support vector machine (SVM) and maximum likelihood classification algorithms. An investigation committee was formed to determine the cause of the collapse of the retaining wall and to suggest technical and institutional measures and alternatives to prevent similar incidents from reoccurring. The report from the committee revealed that the incident was caused by a combination of factors that were not carried out properly.