• Title/Summary/Keyword: Temporal noise

Search Result 289, Processing Time 0.023 seconds

Multiple Camera-based Person Correspondence using Color Distribution and Context Information of Human Body (색상 분포 및 인체의 상황정보를 활용한 다중카메라 기반의 사람 대응)

  • Chae, Hyun-Uk;Seo, Dong-Wook;Kang, Suk-Ju;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.939-945
    • /
    • 2009
  • In this paper, we proposed a method which corresponds people under the structured spaces with multiple cameras. The correspondence takes an important role for using multiple camera system. For solving this correspondence, the proposed method consists of three main steps. Firstly, moving objects are detected by background subtraction using a multiple background model. The temporal difference is simultaneously used to reduce a noise in the temporal change. When more than two people are detected, those detected regions are divided into each label to represent an individual person. Secondly, the detected region is segmented as features for correspondence by a criterion with the color distribution and context information of human body. The segmented region is represented as a set of blobs. Each blob is described as Gaussian probability distribution, i.e., a person model is generated from the blobs as a Gaussian Mixture Model (GMM). Finally, a GMM of each person from a camera is matched with the model of other people from different cameras by maximum likelihood. From those results, we identify a same person in different view. The experiment was performed according to three scenarios and verified the performance in qualitative and quantitative results.

Surface Deformation Measurement of the 2020 Mw 6.4 Petrinja, Croatia Earthquake Using Sentinel-1 SAR Data

  • Achmad, Arief Rizqiyanto;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.139-151
    • /
    • 2021
  • By the end of December 2020, an earthquake with Mw about 6.4 hit Sisak-Moslavina County, Croatia. The town of Petrinja was the most affected region with major power outage and many buildings collapsed. The damage also affected neighbor countries such as Bosnia and Herzegovina and Slovenia. As a light of this devastating event, a deformation map due to this earthquake could be generated by using remote sensing imagery from Sentinel-1 SAR data. InSAR could be used as deformation map but still affected with noise factor that could problematize the exact deformation value for further research. Thus in this study, 17 SAR data from Sentinel-1 satellite is used in order to generate the multi-temporal interferometry utilize Stanford Method for Persistent Scatterers (StaMPS). Mean deformation map that has been compensated from error factors such as atmospheric, topographic, temporal, and baseline errors are generated. Okada model then applied to the mean deformation result to generate the modeled earthquake, resulting the deformation is mostly dominated by strike-slip with 3 meter deformation as right lateral strike-slip. The Okada sources are having 11.63 km in length, 2.45 km in width, and 5.46 km in depth with the dip angle are about 84.47° and strike angle are about 142.88° from the north direction. The results from this modeling can be used as learning material to understand the seismic activity in the latest 2020 Petrinja, Croatia Earthquake.

Development of Non-Invasive Pressure Estimation Using 3D Multi-Path Line Integration Method from Magnetic Resonance Velocimetry (MRV) (자기공명유속계 (MRV) 에서 3차원 다중경로 선적분법을 활용한 비침습적 압력예측 방법 개발)

  • Ilhoon Jang;Muhammad Hafidz Ariffudin;Simon Song
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.14-23
    • /
    • 2023
  • The pressure difference across stenotic blood vessels is a commonly used clinical metric for diagnosing many cardiovascular diseases. At present, most clinical pressure measurements rely solely on invasive catheterization. In this study, we propose a novel method for non-invasive pressure estimation using the incompressible Navier-Stokes equations and a 3D multi-path integration approach. We verify spatio-temporal convergence on an in-silico dataset of a cylindrical straight pipe phantom with steady and pulsatile flow fields. We then evaluate the proposed method on an in vitro dataset of reconstructed control, pre-operative, and post-operative carotid artery cases acquired from 4D flow MRI. The performance of our method is compared to existing approaches based on the pressure Poisson equation and work-energy relative pressure. The results demonstrate the proposed method's high accuracy, robustness to spatio-temporal subsampling, and reduced sensitivity to noise, highlighting its great potential for non-invasive pressure estimation.

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

Alzheimer progression classification using fMRI data (fMRI 데이터를 이용한 알츠하이머 진행상태 분류)

  • Ju Hyeon-Noh;Hee-Deok Yang
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.86-93
    • /
    • 2024
  • The development of functional magnetic resonance imaging (fMRI) has significantly contributed to mapping brain functions and understanding brain networks during rest. This paper proposes a CNN-LSTM-based classification model to classify the progression stages of Alzheimer's disease. Firstly, four preprocessing steps are performed to remove noise from the fMRI data before feature extraction. Secondly, the U-Net architecture is utilized to extract spatial features once preprocessing is completed. Thirdly, the extracted spatial features undergo LSTM processing to extract temporal features, ultimately leading to classification. Experiments were conducted by adjusting the temporal dimension of the data. Using 5-fold cross-validation, an average accuracy of 96.4% was achieved, indicating that the proposed method has high potential for identifying the progression of Alzheimer's disease by analyzing fMRI data.

The effects of a temporal masking on the sound laterlization (시간 마스킹이 음상정위에 미치는 영향)

  • Lee, Chai-Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.352-356
    • /
    • 2010
  • In this study, it is discussed how the directional property of the sound lateralization is influenced by proceeding or succeeding tone. The acoustic source applied here is a reference sound which has 0.5 msec interaural time difference(ITD). Based on this reference sound, interfering sounds with five levels of magnitude are applied to the subjects with four kinds of inter-stimuli time intervals(ISI). The interfering sounds are also added as two different types, proceeding tone and succeeding tone. Additionally, in order to investigate a frequency influence, the reference sound and the interfering sounds are generated by using 2kHz, 4 kHz and a white noise. As a result, the influence on lateralization by proceeding tone is lager than that by succeeding tone. It can consider this result as the effect of temporal masking on lateralization. Moreover, there are small differences of masking effect on lateralization by combinations of pure tone. This result shows that the dependency of frequency domain between reference sound and interfering sound is small on the sound lateralization.

Estimating Chlorophyll-a Concentration using Spectral Mixture Analysis from RapidEye Imagery in Nak-dong River Basin (RapidEye영상과 선형분광혼합화소분석 기법을 이용한 낙동강 유역의 클로로필-a 농도 추정)

  • Lee, Hyuk;Nam, Gibeom;Kang, Taegu;Yoon, Seungjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.329-339
    • /
    • 2014
  • This study aims to estimate chlorophyll-a concentration in rivers using multi-spectral RapidEye imagery and Spectral Mixture Analysis (SMA) and assess the applicability of SMA for multi-temporal imagery analysis. Comparison between images (acquired on Oct. and Nov., 2013) predicted and ground reference chlorophyll-a concentration showed significant performance statistically with determination coefficients of 0.49 and 0.51, respectively. Two band (Red-RE) model for the October and November 2013 RapidEye images showed low performance with coefficient of determinations ($R^2$) of 0.26 and 0.16, respectively. Also Three band (Red-RE-NIR) model showed different performance with $R^2$ of 0.016 and 0.304, respectively. SMA derived Chlorophyll-a concentrations showed relatively higher accuracy than band ratio models based values. SMA was the most appropriate method to calculate Chlorophyll-a concentration using images which were acquired on period of low Chlorophyll-a concentrations. The results of SMA for multi-temporal imagery showed low performance because of the spatio-temporal variation of each end members. This approach provides the potential of providing a cost effective method of monitoring river water quality and management using multi-spectral imagery. In addition, the calculated Chlorophyll-a concentrations using multi-spectral RapidEye imagery can be applied to water quality modeling, enhancing the predicting accuracy.

A Method of Frame Synchronization for Stereoscopic 3D Video (스테레오스코픽 3D 동영상을 위한 동기화 방법)

  • Park, Youngsoo;Kim, Dohoon;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.850-858
    • /
    • 2013
  • In this paper, we propose a method of frame synchronization for stereoscopic 3D video to solve the viewing problem caused by synchronization errors between a left video and a right video using the temporal frame difference image depending on the movement of objects. Firstly, we compute two temporal frame difference images from the left video and the right video which are corrected the vertical parallax between two videos using rectification, and calculate two horizontal projection profiles of two temporal frame difference images. Then, we find a pair of synchronized frames of the two videos by measuring the mean of absolute difference (MAD) of two horizontal projection profiles. Experimental results show that the proposed method can be used for stereoscopic 3D video, and is robust against Gaussian noise and video compression by H.264/AVC.

An Adaptive Block Matching Algorithm Based on Temporal Correlations (시간적 상관성을 이용한 적응적 블록 정합 알고리즘)

  • Yoon, Hyo-Sun;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.199-204
    • /
    • 2002
  • Since motion estimation and motion compensation methods remove the redundant data to employ the temporal redundancy in images, it plays an important role in digital video compression. Because of its high computational complexity, however, it is difficult to apply to high-resolution applications in real time environments. If we have information about the motion of an image block before the motion estimation, the location of a better starting point for the search of an exact motion vector can be determined to expedite the searching process. In this paper, we present an adaptive motion estimation approach bated on temporal correlations of consecutive image frames that defines the search pattern and determines the location of the initial search point adaptively. Through experiments, compared with DS(Diamond Search) algorithm, the proposed algorithm is about 0.1∼0.5(dB) better than DS in terms of PSNR(Peak Signal to Noise Ratio) and improves as high as 50% compared with DS in terms of average number of search point per motion vector estimation.

A Study on Video Object Segmentation using Nonlinear Multiscale Filtering (비선형 다중스케일 필터링을 사용한 비디오 객체 분할에 관한 연구)

  • 이웅희;김태희;이규동;정동석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.1023-1032
    • /
    • 2003
  • Object-based coding, such as MPEG-4, enables various content-based functionalities for multimedia applications. In order to support such functionalities, as well as to improve coding efficiency, each frame of video sequences should be segmented into video objects. In this paper. we propose an effective video object segmentation method using nonlinear multiscale filtering and spatio-temporal information. Proposed method performs a spatial segmentation using a nonlinear multiscale filtering based on the stabilized inverse diffusion equation(SIDE). And, the segmented regions are merged using region adjacency graph(RAG). In this paper, we use a statistical significance test and a time-variant memory as temporal segmentation methods. By combining of extracted spatial and temporal segmentations, we can segment the video objects effectively. Proposed method is more robust to noise than the existing watershed algorithm. Experimental result shows that the proposed method improves a boundary accuracy ratio by 43% on "Akiyo" and by 29% on "Claire" than A. Neri's Method does.