• Title/Summary/Keyword: Temporal image processing

Search Result 158, Processing Time 0.022 seconds

ADHD Measurement Devices based on the Image Processing (영상처리를 이용한 ADHD 측정도구)

  • Lee, Jeong-Hee;Lee, Young-Hee;Cha, Eui-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • In this paper, we propose measurement-devices for the assessment of input vector consisted of face's movement as feature points through image processing based on AAM technique. The proposed method has been applied to classify students by 2-class(ADHD positive, ADHD negative). Experimental results show that the proposed method was successful in acquiring more objective and quantitative data than conventional methods, it takes advantage of examining without temporal and spatial constraints.

  • PDF

Temporal Filter for Image Data Compression (영상 데이터 압축을 위한 Temporal Filter의 구성)

  • 김종훈;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1645-1654
    • /
    • 1993
  • Unlike a noise removal recursive temporal filter, this paper presents a temporal filter which improves visual quality and data compression efficiency. In general, for the temporal band-limitation, temporal aliasing should be considered. Since most of a video signal has temporally aliased components, it is desirable to consider them. From a signal processing point of view, it is impossible to realize the filtering not afeced by the aliasings. However, in this paper, efficient filtering with de-aliasing characteristics is proposed. Considering the location of a video signal, temporal filtering can be accomplished by the spatial filtering along the motion vector trajectory (Motion Adaptive Spatial Filter). This filtered result dose not include the aliasings. Besides the efficient band-limitation, temporal noise is also reduced. For the evaluation of the MASF, its realization and filtering characteristics will be discussed in ditail.

  • PDF

Fine Registration between Very High Resolution Satellite Images Using Registration Noise Distribution (등록오차 분포특성을 이용한 고해상도 위성영상 간 정밀 등록)

  • Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.125-132
    • /
    • 2017
  • Even after applying an image registration, Very High Resolution (VHR) multi-temporal images acquired from different optical satellite sensors such as IKONOS, QuickBird, and Kompsat-2 show a local misalignment due to dissimilarities in sensor properties and acquisition conditions. As the local misalignment, also referred to as Registration Noise (RN), is likely to have a negative impact on multi-temporal information extraction, detecting and reducing the RN can improve the multi-temporal image processing performance. In this paper, an approach to fine registration between VHR multi-temporal images by considering local distribution of RN is proposed. Since the dominant RN mainly exists along boundaries of objects, we use edge information in high frequency regions to identify it. In order to validate the proposed approach, datasets are built from VHR multi-temporal images acquired by optical satellite sensors. Both qualitative and quantitative assessments confirm the effectiveness of the proposed RN-based fine registration approach compared to the manual registration.

A Simplified Pre-processing Method for Efficient Video Noise Reduction (효과적인 영상 잡음 제거를 위한 간략한 전처리 방법)

  • 박운기;이상희;전병우
    • Journal of Broadcast Engineering
    • /
    • v.6 no.2
    • /
    • pp.139-147
    • /
    • 2001
  • Since various noises degrade not only image quality but also compression efficiency in MPEG and H.263, pre-processing is necessary to reduce spatial and temporal noise and to increase ceding efficiency as well. In this paper, we propose a simplified method for noise detection, spatial and temporal noise reduction. Noise detection is based on correlation of the current pixel with its neighboring 4 pixels. Spatial noose reduction utilizes a non-rectangular median filter that is less complex than the conventional rectangular median filter. The proposed temporal filter is an IIR average filter using LUT(Look-up Table) to enhance subjective video quality. The proposed pre-processing method is very simple and efficient.

  • PDF

Video Subband Coding using Quad-Tree Algorithm (쿼드트리 알고리즘을 이용한 비디오 서브밴드 코딩)

  • An, Chong-Koo;Chu, Hyung-Suk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • This paper presents the 3D wavelet based video compression system using quad-tree algorithm. The 3D wavelet based video compression system removes the temporal correlation of the input sequences using the motion compensation filter and decomposes the spatio-temporal subband using the spatial wavelet transform. The proposed system allocates the higher bit rate to the low frequency image of the 3D wavelet sequences and improves the 0.64dB PSNR performance of the reconstructed image in comparison with that of H.263. In addition to the limitation on the propagation of the motion compensation error by the 3D wavelet transform, the proposed system progressively transmits the input sequence according to the resolution and rate scalability.

  • PDF

Vegetation Classification in Natural Swamp Area Using LANDSAT MSS (LANDSAT MSS 영상에 의한 자연 소택지의 식생분류)

  • 지광훈;강필종;조명희
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 1986
  • The study was emphasized on the applicability of Landsat data for vegetation classification of touch as small natural swamp areas Yujeon natural swamp in Haman-gun through image processing system. The image processing technique which was applied is maximum likelihood method. The classified types on the Landsat image are water, nelumbo, grass, agricultural field and conifer. The computer processed classification was compared the existed data for evaluating the result, but there are some difficulties on the exact comparison between them because of discordance of the temporal resolution. The result, anyhow, is quite remarkable that Landsat MSS data can be used for the quantitative estimates of vegetation type classification in such small area.

LAND COVER CLASSIFICATION BY USING SAR COHERENCE IMAGES

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.76-79
    • /
    • 2008
  • This study presents the use of multi-temporal JERS-1 SAR images to the land cover classification. So far, land cover classified by high resolution aerial photo and field survey and so on. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then classified land cover. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass

  • PDF

Novel Adaptive De-interlacing Algorithm using Temporal Correlation

  • Ku, Su-Il;Jung, Tae-Young;Jeong, Je-Chang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.199-202
    • /
    • 2009
  • This paper proposes a novel adaptive algorithm for deinterlacing. In the proposed algorithm, the previously developed Enhanced ELA [6], Chen [9] and Li [10] algorithms were used as a basis. The fundamental mechanism was the selection and application of the appropriate algorithm according to the correlation with the previous and next field using temporal information. Extensive simulations were conducted for video sequences and showed good performance in terms of peak signal-to-ratio (PSNR) and subjective quality.

  • PDF

EXTRACTION OF LAND COVER INFORMATION BY USING SAR COHERENCE IMAGES

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.475-478
    • /
    • 2007
  • This study presents the use of multi-temporal JERS-1 SAR images to extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo and field survey. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass

  • PDF

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.