• Title/Summary/Keyword: Temporal data

Search Result 2,896, Processing Time 0.027 seconds

Temporal Pattern Mining of Moving Objects for Location based Services (위치 기반 서비스를 위한 이동 객체의 시간 패턴 탐사 기법)

  • Lee, Jun-Uk;Baek, Ok-Hyeon;Ryu, Geun-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2002
  • LBS(Location Based Services) provide the location-based information to its mobile users. The primary functionality of these services is to provide useful information to its users at a minimum cost of resources. The functionality can be implemented through data mining techniques. However, conventional data mining researches have not been considered spatial and temporal aspects of data simultaneously. Therefore, these techniques are inappropriate to apply on the objects of LBS, which change spatial attributes over time. In this paper, we propose a new data mining technique for identifying the temporal patterns from the series of the locations of moving objects that have both temporal and spatial dimension. We use a spatial operation of contains to generalize the location of moving point and apply time constraints between the locations of a moving object to make a valid moving sequence. Finally, the spatio-temporal technique proposed in this paper is very practical approach in not only providing more useful knowledge to LBS, but also improving the quality of the services.

Differences in the Control of Anticipation Timing Response by Spatio-temporal Constraints

  • Seok-Hwan LEE;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • v.7 no.2
    • /
    • pp.39-51
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate differences in the control process to satisfy spatial and temporal constraints imposed upon the anticipation timing response by analyzing the effect of spatio-temporal accuracy demands on eye movements, response accuracy, and the coupling of eye and hand movements. Research design, data, and methodology: 12 right-handed male subjects participated in the experiment and performed anticipation timing responses toward a stimulus moving at three velocities (0.53m/s, 0.66m/s, 0.88m/s) in two task constraint conditions (temporal constraint, spatial constraint). During the response, response accuracy and eye movement patterns were measured from which timing and radial errors, the latency of saccade, fixation duration of the point of gaze (POG), distance between the POG and stimulus, and spatio-temporal coupling of the POG and hand were calculated. Results: The timing and radial errors increased with increasing stimulus velocity, and the spatio-temporal constraints led to larger timing errors than the temporal constraints. The latency of saccade and the temporal coupling of eye and hand decreased with increasing stimulus velocity and were shorter and longer respectively in the spatio-temporal constraint condition than in the temporal constraint condition. The fixation duration of the POG also decreased with increasing stimulus velocity, but no difference was shown between task constraint conditions. The distance between the POG and stimulus increased with increasing stimulus velocity and was longer in the temporal constraint condition compared to the spatio-temporal constraint condition. The spatial coupling of eye and hand was larger with the velocity 0.88m/s than those in other velocity conditions. Conclusions: These results suggest that differences in eye movement patterns and spatio-temporal couplings of stimulus, eye and hand by task constraints are closely related with the accuracy of anticipation timing responses, and the spatial constraints imposed may decrease the temporal accuracy of response by increasing the complexity of perception-action coupling.

Analysis of Characteristics of Air Pollution Over Asia with Satellite-derived $NO_2$ and HCHO using Statistical Methods (환경 위성관측자료의 통계분석을 통한 동아시아 대기오염특성 연구)

  • Baek, K.H.;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.495-503
    • /
    • 2010
  • Satellite data have an intrinsic problem due to a number of various physical parameters, which can have a similar effect on measured radiance. Most evaluations of satellite performance have relied on comparisons with limited spatial and temporal resolution of ground-based measurements such as soundings and in-situ measurements. In order to overcome this problem, a new way of satellite data evaluation is suggested with statistical tools such as empirical orthogonal function(EOF), and singular value decomposition(SVD). The EOF analyses with OMI and OMI HCHO over northeast Asia show that the spatial pattern show high correlation with population density. This suggests that human activity is a major source of as well as HCHO over this region. However, this analysis is contradictory to the previous finding with GOME HCHO that biogenic activity is the main driving mechanism(Fu et al., 2007). To verify the source of HCHO over this region, we performed the EOF analyses with vegetation and HCHO distribution. The results showed no coherence in the spatial and temporal pattern between two factors. Rather, the additional SVD analysis between $NO_2$ and HCHO shows consistency in spatial and temporal coherence. This outcome suggests that the anthropogenic emission is the main source of HCHO over the region. We speculate that the previous study appears to be due to low temporal and spatial resolution of GOME measurements or uncertainty in model input data.

Analysis of Relationships between Features Extracted from SAR Data and Land-cover Classes (SAR 자료에서 추출한 특징들과 토지 피복 항목 사이의 연관성 분석)

  • Park, No-Wook;Chi, Kwang-Hoon;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • This paper analyzed relationships between various features from SAR data with multiple acquisition dates and mode (frequency, polarization and incidence angles), and land-cover classes. Two typical types of features were extracted by considering acquisition conditions of currently available SAR data. First, coherence, temporal variability and principal component transform-based features were extracted from multi-temporal and single mode SAR data. C-band ERS-1/2, ENVISAT ASAR and Radarsat-1, and L-band JERS-1 SAR data were used for those features and different characteristics of different SAR sensor data were discussed in terms of land-cover discrimination capability. Overall, tandem coherence showed the best discrimination capability among various features. Long-term coherence from C-band SAR data provided a useful information on the discrimination of urban areas from other classes. Paddy fields showed the highest temporal variability values in all SAR sensor data. Features from principal component transform contained particular information relevant to specific land-cover class. As features for multiple mode SAR data acquired at similar dates, polarization ratio and multi-channel variability were also considered. VH/VV polarization ratio was a useful feature for the discrimination of forest and dry fields in which the distributions of coherence and temporal variability were significantly overlapped. It would be expected that the case study results could be useful information on improvement of classification accuracy in land-cover classification with SAR data, provided that the main findings of this paper would be confirmed by extensive case studies based on multi-temporal SAR data with various modes and ground-based SAR experiments.

Vegetation Classification from Time Series NOAA/AVHRR Data

  • Yasuoka, Yoshifumi;Nakagawa, Ai;Kokubu, Keiko;Pahari, Krishna;Sugita, Mikio;Tamura, Masayuki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.429-432
    • /
    • 1999
  • Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.

  • PDF

Modeling pediatric tumor risks in Florida with conditional autoregressive structures and identifying hot-spots

  • Kim, Bit;Lim, Chae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1225-1239
    • /
    • 2016
  • We investigate pediatric tumor incidence data collected by the Florida Association for Pediatric Tumor program using various models commonly used in disease mapping analysis. Particularly, we consider Poisson normal models with various conditional autoregressive structure for spatial dependence, a zero-in ated component to capture excess zero counts and a spatio-temporal model to capture spatial and temporal dependence, together. We found that intrinsic conditional autoregressive model provides the smallest Deviance Information Criterion (DIC) among the models when only spatial dependence is considered. On the other hand, adding an autoregressive structure over time decreases DIC over the model without time dependence component. We adopt weighted ranks squared error loss to identify high risk regions which provides similar results with other researchers who have worked on the same data set (e.g. Zhang et al., 2014; Wang and Rodriguez, 2014). Our results, thus, provide additional statistical support on those identied high risk regions discovered by the other researchers.

Urban Growth Monitoring using Multi-temporal Satellite Images and Geographic Information

  • Lee, Kwang-Jae;Kim, Youn-Soo;Kim, Byung-Kyo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.470-472
    • /
    • 2003
  • The primary goal in this paper is to analyze urban growth patterns using multi-temporal remote sensing images and geographic information data. In order to accomplish this purpose, firstly data pre-processing is carried out, and then land-use maps are generated with ancillary data source by heads-up on-screen digitizing. Lastly, using the results of the previous stages, the patterns of land-use and urban changes are monitored by the proposed scheme. In this research, using the multi-temporal images and geographic information data, monitoring of urban growth was carried out with the application of urban land-use changes.

  • PDF

Spatio-temporal Query Clustering: A Data Cubing Approach (시공간 질의 클러스터링: 데이터 큐빙 기법)

  • Chen, Xiangrui;Baek, Sung-Ha;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.287-288
    • /
    • 2009
  • Multi-query optimization (MQO) is a critical research issue in the real-time data stream management system (DSMS). We propose to address this problem in the ubiquitous GIS (u-GIS) environment, focusing on grouping 'similar' spatio-temporal queries incrementally into N clusters so that they can be processed virtually as N queries. By minimizing N, the overlaps in the data requirements of the raw queries can be avoided, which implies the reducing of the total disk I/O cost. In this paper, we define the spatio-temporal query clustering problem and give a data cubing approach (Q-cube), which is expected to be implemented in the cloud computing paradigm.

Data Alignment for Data Fusion in Wireless Multimedia Sensor Networks Based on M2M

  • Cruz, Jose Roberto Perez;Hernandez, Saul E. Pomares;Cote, Enrique Munoz De
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.229-240
    • /
    • 2012
  • Advances in MEMS and CMOS technologies have motivated the development of low cost/power sensors and wireless multimedia sensor networks (WMSN). The WMSNs were created to ubiquitously harvest multimedia content. Such networks have allowed researchers and engineers to glimpse at new Machine-to-Machine (M2M) Systems, such as remote monitoring of biosignals for telemedicine networks. These systems require the acquisition of a large number of data streams that are simultaneously generated by multiple distributed devices. This paradigm of data generation and transmission is known as event-streaming. In order to be useful to the application, the collected data requires a preprocessing called data fusion, which entails the temporal alignment task of multimedia data. A practical way to perform this task is in a centralized manner, assuming that the network nodes only function as collector entities. However, by following this scheme, a considerable amount of redundant information is transmitted to the central entity. To decrease such redundancy, data fusion must be performed in a collaborative way. In this paper, we propose a collaborative data alignment approach for event-streaming. Our approach identifies temporal relationships by translating temporal dependencies based on a timeline to causal dependencies of the media involved.

Telephone Speech Recognition with Data-Driven Selective Temporal Filtering based on Principal Component Analysis

  • Jung Sun Gyun;Son Jong Mok;Bae Keun Sung
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.764-767
    • /
    • 2004
  • The performance of a speech recognition system is generally degraded in telephone environment because of distortions caused by background noise and various channel characteristics. In this paper, data-driven temporal filters are investigated to improve the performance of a specific recognition task such as telephone speech. Three different temporal filtering methods are presented with recognition results for Korean connected-digit telephone speech. Filter coefficients are derived from the cepstral domain feature vectors using the principal component analysis.

  • PDF