• Title/Summary/Keyword: Temporal cues

Search Result 35, Processing Time 0.02 seconds

Pattern-based Depth Map Generation for Low-complexity 2D-to-3D Video Conversion (저복잡도 2D-to-3D 비디오 변환을 위한 패턴기반의 깊이 생성 알고리즘)

  • Han, Chan-Hee;Kang, Hyun-Soo;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2015
  • 2D-to-3D video conversion vests 3D effects in a 2D video by generating stereoscopic views using depth cues inherent in the 2D video. This technology would be a good solution to resolve the problem of 3D content shortage during the transition period to the full ripe 3D video era. In this paper, a low-complexity depth generation method for 2D-to-3D video conversion is presented. For temporal consistency in global depth, a pattern-based depth generation method is newly introduced. A low-complexity refinement algorithm for local depth is also provided to improve 3D perception in object regions. Experimental results show that the proposed method outperforms conventional methods in terms of complexity and subjective quality.

Classification of nasal places of articulation based on the spectra of adjacent vowels (모음 스펙트럼에 기반한 전후 비자음 조음위치 판별)

  • Jihyeon Yun;Cheoljae Seong
    • Phonetics and Speech Sciences
    • /
    • v.15 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • This study examined the utility of the acoustic features of vowels as cues for the place of articulation of Korean nasal consonants. In the acoustic analysis, spectral and temporal parameters were measured at the 25%, 50%, and 75% time points in the vowels neighboring nasal consonants in samples extracted from a spontaneous Korean speech corpus. Using these measurements, linear discriminant analyses were performed and classification accuracies for the nasal place of articulation were estimated. The analyses were applied separately for vowels following and preceding a nasal consonant to compare the effects of progressive and regressive coarticulation in terms of place of articulation. The classification accuracies ranged between approximately 50% and 60%, implying that acoustic measurements of vowel intervals alone are not sufficient to predict or classify the place of articulation of adjacent nasal consonants. However, given that these results were obtained for measurements at the temporal midpoint of vowels, where they are expected to be the least influenced by coarticulation, the present results also suggest the potential of utilizing acoustic measurements of vowels to improve the recognition accuracy of nasal place. Moreover, the classification accuracy for nasal place was higher for vowels preceding the nasal sounds, suggesting the possibility of higher anticipatory coarticulation reflecting the nasal place.

The Effect of Retinal and Perceived Motion Trajectory of Visual Motion Stimulus on Estimated Speed of Motion (운동자극의 망막상 운동거리와 지각된 운동거리가 운동속도 추정에 미치는 영향)

  • Park Jong-Jin;Hyng-Chul O. Li;ShinWoo Kim
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.3
    • /
    • pp.181-196
    • /
    • 2023
  • Size, velocity, and time equivalence are mechanisms that allow us to perceive objects in three-dimensional space consistently, despite errors on the two-dimensional retinal image. These mechanisms work on common cues, suggesting that the perception of motion distance, motion speed, and motion time may share common processing. This can lead to the hypothesis that, despite the spatial nature of visual stimuli distorting temporal perception, the perception of motion speed and the perception of motion duration will tend to oppose each other, as observed for objects moving in the environment. To test this hypothesis, the present study measured perceived speed using Müller-Lyer illusion stimulus to determine the relationship between the time-perception consequences of motion stimuli observed in previous studies and the speed perception measured in the present study. Experiment 1 manipulated the perceived motion trajectory while controlling for the retinal motion trajectory, and Experiment 2 manipulated the retinal motion trajectory while controlling for the perceived motion trajectory. The result is that the speed of the inward stimulus, which is perceived to be shorter, is estimated to be higher than that of the outward stimulus, which is perceived to be longer than the actual distance traveled. Taken together with previous time perception findings, namely that time perception is expanded for outward stimuli and contracted for inward stimuli, this suggests that when the perceived trajectory of a stimulus manipulated by the Müller-Lyer illusion is controlled for, perceived speed decreases with increasing duration and increases with decreasing duration when the perceived distance of the stimulus is constant. This relationship suggests that the relationship between time and speed perceived by spatial cues corresponds to the properties of objects moving in the environment, i.e, an increase in time decreases speed and a decrease in time increases speed when distance remains the same.

Articulatory Attributes in Korean Nonassimilating Contexts

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.109-121
    • /
    • 2013
  • This study examined several kinematic properties of the primary articulator (the tongue dorsum) and the supplementary articulator (the jaw) in the articulation of the voiceless velar stop (/k/) within nonassimilating contexts. We examined in particular the spatiotemporal properties (constriction duration and constriction maxima) from the constriction onset to the constriction offset by analyzing a velar (/k/) followed by the coronal fricative (/s/), the coronal stop (/t/), and the labial (/p/) in across-word boundary conditions (/k#s/, /k#t/, and /k#p/). Along with these measurements, we investigated intergestural temporal coordination between C1 and C2 and the jaw articulator in relation to its coordination with the articulation of consonant sequences. The articulatory movement data was collected by means of electromagnetic midsagittal articulometry (EMMA). Four native speakers of Seoul Korean participated in the laboratory experiment. The results showed several characteristics. First, a velar (/k/) in C1 was not categorically reduced. Constriction duration and constriction degree of the velar (/k/) were similar within nonassimilating contexts (/k#s/=/k#t/=/k#p/). This might mean that spatiotemporal attributes during constriction duration were stable and consistent across different contexts, which might be subsequently associated with the nontarget status of the velar in place assimilation. Second, the gestural overlap could be represented as the order of /k#s/ (less) < /k#p/ (intermediate) < /k#t/ (more) as we measured the onset-to-onset lag (a longer lag indicated shorter gestural overlap.). This indicates a gestural overlap within nonassimilating contexts may not be constrained by any of the several constraints including the perceptual recoverability constraint (e.g., more overlap in Front-to-Back sequences compared to the reverse order (Back-to-Front) since perceptual cues in C1 can be recovered anytime during C2 articulation), the low-level speech motor constraint (e.g., more overlap in lingual-nonlingual sequences as compared to the lingual-lingual sequences), or phonological contexts effects (e.g., similarity in gestural overlap within nonassimilating contexts). As one possible account for more overlap in /k#t/ sequences as compared to /k#p/, we suspect speakers' knowledge may be receptive to extreme encroachment on C1 by the gestural overlap of the coronal in C2 since it does not obscure the perceptual cue of C1 as much as the labial in C2. Third, actual jaw position during C2 was higher in coronals (/s/, /t/) than in the labial (/p/). However, within the coronals, there was no manner-dependent jaw height difference in C2 (/s/=/t/). Vertical jaw position of C1 and C2 was seen as inter-dependent as higher jaw position in C1 was closely associated with C2. Lastly, a greater gap in jaw height was associated with longer intergestural timing (e.g., less overlap), but was confined to the cluster type (/kp/) with the lingual-nonlingual sequence. This study showed that Korean jaw articulation was independent from coordinating primary articulators in gestural overlap in some cluster types (/k#s/, /k#t/) while not in others (e.g., /k#p/). Overall, the results coherently indicate the velar stop (/k/) in C1 was robust in articulation, which may have subsequently contributed to the nontarget status of the velar (/k/) in place assimilation processes.

Effects of Size Illusion According to Distance Information Restriction on Time Perception (거리 정보 제한에 따른 크기 착시가 시간 지각에 미치는 영향)

  • Kim, Min-Kyu;Lee, Won-Seob;Kim, Shin-Woo;Li, Hyung-Chul O.
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • IThe perception of sub-second duration through the visual sensory system is affected by non-temporal characteristics (factors other than the duration of the stimulus). However, studies have shown that if distance information is abundant and size constancy maintained, the duration of the target is constantly perceived. The current study examined the relationship between size and time perception constancy in a three-dimensional environment with limited distance information. A device was constructed to limit the participants' bilateral and monocular cues. This prevented participants from maintaining size constancy, resulting in size illusions that could not accurately perceive physical size. In Experiment 1, the size of the physical stimulus of reference and test stimuli were the same at all viewing distances. The results suggest that, despite the same physical size, stimuli with close observations were perceived to be greater and lasted longer. In Experiment 2, the retinal size of the reference stimuli and test stimuli was controlled equally at all viewing distances. As a result, although the physical size of the stimuli increased as the observation increased, the perceived size of all the stimuli was the same. Therefore, the duration of the target was constantly perceived at all viewing distances. The results of this study demonstrate that even when distance information is limited, time perception is affected by the perceived size of the object. It also suggests that when rich distance information exists, the duration of the object can be constantly perceived even if the observation distance varies.