• Title/Summary/Keyword: Temporal cost

Search Result 206, Processing Time 0.039 seconds

Advances, challenges, and prospects of electroencephalography-based biomarkers for psychiatric disorders: a narrative review

  • Seokho Yun
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.4
    • /
    • pp.261-268
    • /
    • 2024
  • Owing to a lack of appropriate biomarkers for accurate diagnosis and treatment, psychiatric disorders cause significant distress and functional impairment, leading to social and economic losses. Biomarkers are essential for diagnosing, predicting, treating, and monitoring various diseases. However, their absence in psychiatry is linked to the complex structure of the brain and the lack of direct monitoring modalities. This review examines the potential of electroencephalography (EEG) as a neurophysiological tool for identifying psychiatric biomarkers. EEG noninvasively measures brain electrophysiological activity and is used to diagnose neurological disorders, such as depression, bipolar disorder (BD), and schizophrenia, and identify psychiatric biomarkers. Despite extensive research, EEG-based biomarkers have not been clinically utilized owing to measurement and analysis constraints. EEG studies have revealed spectral and complexity measures for depression, brainwave abnormalities in BD, and power spectral abnormalities in schizophrenia. However, no EEG-based biomarkers are currently used clinically for the treatment of psychiatric disorders. The advantages of EEG include real-time data acquisition, noninvasiveness, cost-effectiveness, and high temporal resolution. Challenges such as low spatial resolution, susceptibility to interference, and complexity of data interpretation limit its clinical application. Integrating EEG with other neuroimaging techniques, advanced signal processing, and standardized protocols is essential to overcome these limitations. Artificial intelligence may enhance EEG analysis and biomarker discovery, potentially transforming psychiatric care by providing early diagnosis, personalized treatment, and improved disease progression monitoring.

Process Development and Verification for Construction VE Object Selection of Performance-Oriented (성능중심의 건설VE 대상 선정 프로세스 개발 및 검증)

  • Kim, Soo-Yong;Yang, Jin-Kook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.25-32
    • /
    • 2012
  • The current VE activity is recognizing the VE object selection in job-plan simply as formal procedure. Therefore, many problems are happening in the process of selecting VE object during the preparatory stage. As a result of trying to analysis problems through literature review and expert interview, the problems were surveyed such as the lack of connectivity between preparatory stage and analytical stage, the temporal cost-based restrictions, and lack of recognition in VE team members in the existing method of selecting subjects centering on the high-cost field. Accordingly, this study suggested the improved method of selecting VE objects in order to solve this problem in the stage of selecting VE objects. An improvement method of selecting VE objects is what selects the secondary VE subjects by applying again Fish-Bone diagram and Worth technique based on the primary VE objects, which were selected by the conventional technique of selecting objects in the high-cost field. To verify effectiveness in the proposed improvement method, it tried to apply it to the actual case of the road construction VE project. As result of, the improvement method was analyzed to be considerably effective in comparison with the existing selection method of VE objects. Therefore, the Improvement method will contribute to increasing the VE performance.

Comparative Analysis on Cloud and On-Premises Environments for High-Resolution Agricultural Climate Data Processing (고해상도 농업 기후 자료 처리를 위한 클라우드와 온프레미스 비교 분석)

  • Park, Joo Hyeon;Ahn, Mun Il;Kang, Wee Soo;Shim, Kyo-Moon;Park, Eun Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • The usefulness of processing and analysis systems of GIS-based agricultural climate data is affected by the reliability and availability of computing infrastructures such as cloud, on-premises, and hybrid. Cloud technology has grown in popularity. However, various reference cases accumulated over the years of operational experiences point out important features that make on-premises technology compatible with cloud technology. Both cloud and on-premises technologies have their advantages and disadvantages in terms of operational time and cost, reliability, and security depending on cases of applications. In this study, we have described characteristics of four general computing platforms including cloud, on-premises with hardware-level virtualization, on-premises with operating system-level virtualization and hybrid environments, and compared them in terms of advantages and disadvantages when a huge amount of GIS-based agricultural climate data were stored and processed to provide public services of agro-meteorological and climate information at high spatial and temporal resolutions. It was found that migrating high-resolution agricultural climate data to public cloud would not be reasonable due to high cost for storing a large amount data that may be of no use in the future. Therefore, we recommended hybrid systems that the on-premises and the cloud environments are combined for data storage and backup systems that incur a major cost, and data analysis, processing and presentation that need operational flexibility, respectively.

Development of tracer concentration analysis method using drone-based spatio-temporal hyperspectral image and RGB image (드론기반 시공간 초분광영상 및 RGB영상을 활용한 추적자 농도분석 기법 개발)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun;Han, Eunjin;Kwon, Siyoon;Kim, Youngdo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.623-634
    • /
    • 2022
  • Due to river maintenance projects such as the creation of hydrophilic areas around rivers and the Four Rivers Project, the flow characteristics of rivers are continuously changing, and the risk of water quality accidents due to the inflow of various pollutants is increasing. In the event of a water quality accident, it is necessary to minimize the effect on the downstream side by predicting the concentration and arrival time of pollutants in consideration of the flow characteristics of the river. In order to track the behavior of these pollutants, it is necessary to calculate the diffusion coefficient and dispersion coefficient for each section of the river. Among them, the dispersion coefficient is used to analyze the diffusion range of soluble pollutants. Existing experimental research cases for tracking the behavior of pollutants require a lot of manpower and cost, and it is difficult to obtain spatially high-resolution data due to limited equipment operation. Recently, research on tracking contaminants using RGB drones has been conducted, but RGB images also have a limitation in that spectral information is limitedly collected. In this study, to supplement the limitations of existing studies, a hyperspectral sensor was mounted on a remote sensing platform using a drone to collect temporally and spatially higher-resolution data than conventional contact measurement. Using the collected spatio-temporal hyperspectral images, the tracer concentration was calculated and the transverse dispersion coefficient was derived. It is expected that by overcoming the limitations of the drone platform through future research and upgrading the dispersion coefficient calculation technology, it will be possible to detect various pollutants leaking into the water system, and to detect changes in various water quality items and river factors.

Compact Field Remapping for Dynamically Allocated Structures (동적으로 할당된 구조체를 위한 압축된 필드 재배치)

  • Kim, Jeong-Eun;Han, Hwan-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.1003-1012
    • /
    • 2005
  • The most significant difference of embedded systems from general purpose systems is that embedded systems are allowed to use only limited resources including battery and memory. Especially, the number of applications increases which deal with multimedia data. In those systems with high data computations, the delay of memory access is one of the major bottlenecks hurting the system performance. As a result, many researchers have investigated various techniques to reduce the memory access cost. Most programs generally have locality in memory references. Temporal locality of references means that a resource accessed at one point will be used again in the near future. Spatial locality of references is that likelihood of using a resource gets higher if resources near it were just accessed. The latest embedded processors usually adapt cache memory to exploit these two types of localities. Processors access faster cache memory than off-chip memory, reducing the latency. In this paper we will propose the enhanced dynamic allocation technique for structure-type data in order to eliminate unused memory space and to reduce both the cache miss rate and the application execution time. The proposed approach aggregates fields from multiple records dynamically allocated and consecutively remaps them on the memory space. Experiments on Olden benchmarks show $13.9\%$ L1 cache miss rate drop and $15.9\%$ L2 cache miss drop on average, compared to the previously proposed techniques. We also find execution time reduced by $10.9\%$ on average, compared to the previous work.

Analysis of Temporal and Spatial Red Tide Change in the South Sea of Korea Using the GOCI Images of COMS (천리안 위성 GOCI 영상을 이용한 남해안의 시공간적 적조변화 분석)

  • Kim, Dong Kyoo;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.129-136
    • /
    • 2014
  • This study deals with red tide detection by using the remote sensing imagery from the Geostationary Ocean Color Imager (GOCI), the world's first geostationary orbit satellite, around the southern coast of Korea where the most severe red tide occurred recently. The red tide zone was determined by the available data selection from the GOCI imagery during the period of red tide occurrence and also the severe red tide zone was detected through the spatial analysis by temporal change out of the red tide zone. This study results showed that the coast in the vicinity of the Hansan and Yokji in Tongyeong-si was classified into the severe red tide zone, and that the red tide was likely to spread from the coast of Hansan and Yokji to the one of Sanyang-eub. In addition, the comparative analysis between the area of red tide occurrence, the prevention activities of Gyeongsangnam-do provincial government and the amount of the damage cost over time showed close correlation among them. It is still early to conclude that the study is showing the severe red tide zone and the spread path exactly due to various factors for red tide occurrence and activities. In order to improve the reliability of the results, the more data analysis is required.

The Dynamic Split Policy of the KDB-Tree in Moving Objects Databases (이동 객체 데이타베이스에서 KDB-tree의 동적 분할 정책)

  • Lim Duk-Sung;Lee Chang-Heun;Hong Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.396-408
    • /
    • 2006
  • Moving object databases manage a large amount of past location data which are accumulated as the time goes. To retrieve fast the past location of moving objects, we need index structures which consider features of moving objects. The KDB-tree has a good performance in processing range queries. Although we use the KDB-tree as an index structure for moving object databases, there has an over-split problem in the spatial domain since the feature of moving object databases is to increase the time domain. Because the over-split problem reduces spatial regions in the MBR of nodes inverse proportion to the number of splits, there has a problem that the cost for processing spatial-temporal range queries is increased. In this paper, we propose the dynamic split strategy of the KDB-tree to process efficiently the spatial-temporal range queries. The dynamic split strategy uses the space priority splitting method for choosing the split domain, the recent time splitting policy for splitting a point page to maximize the space utilization, and the last division policy for splitting a region page. We compare the performance of proposed dynamic split strategy with the 3DR-tree, the MV3R-tree, and the KDB-tree. In our performance study for range queries, the number of node access in the MKDB-tree is average 30% less than compared index structures.

Efficient Implementation of SVM-Based Speech/Music Classifier by Utilizing Temporal Locality (시간적 근접성 향상을 통한 효율적인 SVM 기반 음성/음악 분류기의 구현 방법)

  • Lim, Chung-Soo;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.149-156
    • /
    • 2012
  • Support vector machines (SVMs) are well known for their pattern recognition capability, but proper care should be taken to alleviate their inherent implementation cost resulting from high computational intensity and memory requirement, especially in embedded systems where only limited resources are available. Since the memory requirement determined by the dimensionality and the number of support vectors is generally too high for a cache in embedded systems to accomodate, frequent accesses to the main memory occur inevitably whenever the cache is not able to provide requested data to the processor. These frequent accesses to the main memory result in overall performance degradation and increased energy consumption because a memory access typically takes longer and consumes more energy than a cache access or a register access. In this paper, we propose a technique that reduces the number of main memory accesses by optimizing the data access pattern of the SVM-based classifier in such a way that the temporal locality of the accesses increases, fully utilizing data loaded into the processor chip. With experiments, we confirm the enhancement made by the proposed technique in terms of the number of memory accesses, overall execution time, and energy consumption.

Macroeconomic Effects of the Global Resource Crisis (글로벌 자원위기의 거시경제적 효과분석)

  • Song, Tae-Jung;Kim, Gi-Seung
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.10
    • /
    • pp.259-267
    • /
    • 2008
  • This research will examine the probabilities of future global resource crisis and what significance and effect will come upon our economy through the rise of the cost of resources. From now on, the lack of the supply of global resources will dull the world economic growth. Not only that, but the direction of each country's economic development will be decided by the appropriate measure to the resource crisis. If we are to sustain this inefficient industrial structure, as a country with high dependancy on foreign resources, Korea might face macroeconomic shock and the loss of industrial competitiveness. Therefore, we must increase the efficiency of the resource usage in the manufacturing industry such as the chemical and steel industry, and now is a period when we must add high value to our products. Henceforth, the structural constraints of supply will be the root cause of resource crisis. Thus, we must lead the subject of the economic agencies, such as companies and consumers, so that they will be able to adapt to a new paradigm called the fundamental lack of resources, rather than temporal crisis management. The Korean economy must adjust the environment for industry transformation to be achieved.

The Development of a Multi-sensor Payload for a Micro UAV and Generation of Ortho-images (마이크로 UAV 다중영상센서 페이로드개발과 정사영상제작)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1645-1653
    • /
    • 2014
  • In general, RGB, NIR, and thermal images are used for obtaining geospatial data. Such multiband images are collected via devices mounted on satellites or manned flights, but do not always meet users' expectations, due to issues associated with temporal resolution, costs, spatial resolution, and effects of clouds. We believe high-resolution, multiband images can be obtained at desired time points and intervals, by developing a payload suitable for a low-altitude, auto-piloted UAV. To achieve this, this study first established a low-cost, high-resolution multiband image collection system through developing a sensor and a payload, and collected geo-referencing data, as well as RGB, NIR and thermal images by using the system. We were able to obtain a 0.181m horizontal deviation and 0.203m vertical deviation, after analyzing the positional accuracy of points based on ortho mosaic images using the collected RGB images. Since this meets the required level of spatial accuracy that allows production of maps at a scale of 1:1,000~5,000 and also remote sensing over small areas, we successfully validated that the payload was highly utilizable.