• Title/Summary/Keyword: Temporal and spatial variability

Search Result 220, Processing Time 0.026 seconds

Spatial Patterns and Temporal Variability of the Haines Index related to the Wildland Fire Growth Potential over the Korean Peninsula (한반도 산불 확장 잠재도와 관련된 Haines Index의 시.공간적 특징)

  • Choi Cwang-Yong;Kim Jun-Su;Won Myoung-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.168-187
    • /
    • 2006
  • Windy meteorological conditions and dried fire fuels due to higher atmospheric instability and dryness in the lower troposphere can exacerbate fire controls and result in more losses of forest resources and residential properties due to enhanced large wildland fires. Long-term (1979-2005) climatology of the Haines Index reconstructed in this study reveals that spatial patterns and intra-annual variability of the atmospheric instability and dryness in the lower troposphere affect the frequency of wildland fire incidences over the Korean Peninsula. Exponential regression models verify that daily high Haines Index and its monthly frequency has statistically significant correlations with the frequency of the wildland fire occurrences during the fire season (December-April) in South Korea. According to the climatic maps of the Haines Index created by the Geographic Information System (GIS) using the Digital Elevation Model (DEM), the lowlands below 500m from the mean sea level in the northwestern regions of the Korean Peninsula demonstrates the high frequency of the Haines Index equal to or greater than five in April and May. The annual frequency of the high Haines Index represents an increasing trend across the Korean Peninsula since the mid-1990s, particularly in Gyeongsangbuk-do and along the eastern coastal areas. The composite of synoptic weather maps at 500hPa for extreme events, in which the high Haines Index lasted for several days consecutively, illustrates that the cold low pressure system developed around the Sea of Okhotsk in the extreme event period enhances the pressure gradient and westerly wind speed over the Korean Peninsula. These results demonstrate the need for further consideration of the spatial-temporal characteristics of vertical atmospheric components, such as atmospheric instability and dryness, in the current Korean fire prediction system.

Spatial and temporal variation on fruit set in Epipactis thunbergii (Orchidaceae) from southern Korea (한국남부 자생 닭의난초 (난초과)의 시 공간에 따른 결실률 변이)

  • Chung, Mi Yoon;Chung, Myong Gi
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.4
    • /
    • pp.353-361
    • /
    • 2015
  • Spatio-temporal variation in fruit set in orchids would affect long-term population viability and will influence genetic diversity over many generations. The aim of this study was to examine the breeding system of the nectariferous terrestrial orchid Epipactis thunbergii, to specifically determine levels of fruit set in terms of time and space under natural conditions. We examined pollination under natural conditions and conducted hand pollination experiments during a 2-year survey in four populations located along 1.5 km of coastal line in Jinguiri (rual village) [Jeollanam-do (province), southern Korea]. We found that, over a 2-year period, levels of percentage of fruit set were similar within patches of the four populations. By contrast, we detected significant differences in the percentage of fruit set among patches. We also found that plants with larger inflorescence size produced significantly more fruits than plants with fewer flowers. Over a 2-year period, the percentage of fruit set for E. thunbergii was similar but low (14.1%) compared to that averaged for eighty-four rewarding species (37.1%). However, an increase in fruit set was achieved by hand-pollinations: artificial self-pollination (90.5-95.2%), artificial geitonogamy (94.7-95.0%), and cross-pollination (artificial xenogamy, 91.3-91.4%). No emasculated flowers produced fruits and no automatic pollination was found in E. thunbergii. Our findings suggest that E. thunbergii is a self-compatible terrestrial orchid that depends on pollinators (insects) to achieve fruit set in natural habitats, and that local environmental conditions were similar over a period of 2 years in the study area. Our results also highlight the cryptic variation of fruit production in time, but more pronounced variability in space.

Variability of Satellite-derived Chlorophyll-a Concentration in Relation to Indian Ocean Dipole (IOD) Variation (인도양 쌍극진동 변동에 따른 위성에서 추정된 표층 클로로필-a 농도 변화 연구)

  • Son, Young Baek;Kim, Suk Hyun;Kim, Sang-Hyun;Rho, TaeKeun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.917-930
    • /
    • 2017
  • To understand the temporal and spatial variations of surface chlorophyll-a concentration (Chl-a) distribution in the Indian Ocean ($30^{\circ}E{\sim}120^{\circ}E$, $30^{\circ}S{\sim}30^{\circ}N$) by the Indian Ocean Dipole (IOD), we conducted EOF and K means analyses of monthly satellite-derived Chl-a data in the region during 1998~2016 periods. Chl-a showed low values in the central region of the Indian Ocean and relatively high values in the upwelling region and around the marginal regions of the Indian Ocean. It also had a strong seasonal variation of Chl-a, showing the lowest value in the spring and the highest value in summer due to the change of the monsoon and current system. The EOF analysis showed that Chl-a variation in EOF mode 1 is related to ENSO (El $Ni{\tilde{n}}o$/Southern Oscillation) and that of mode 2 is linked to IOD. Both modes explained spatially opposite trends of Chl-a in the east and west Indian Ocean. From K means analysis, the Chl-a variation in the east and west Indian Ocean, and around India have relatively good relationship with IOD while that in the tropical and middle Indian Ocean closely associated with ENSO. The spatial and temporal distribution of Chl-a also showed distinct spatial and temporal variations depend on the different types of IOD events. IOD classifies two patterns, which occurred during the developing ENSO (First Type IOD) and the year following ENSO event (Second Type IOD). Chl-a variation in the First Type IOD started in summer and peaked in fall around the east and west Indian Ocean. Chl-a variation in the Second Type IOD occurred started in spring, peaked in summer and fall, and disappeared in winter. In the Chl-a variation related to IOD, developing process appearing in the Chl-a difference between the east and west Indian ocean was similar. Chl-a variation in the northern Indian Ocean were opposite trend with changing developing phase of IOD.

Analysis of Shoreline Changes from Aerial Photographs at Oregon Inlet Terminal Groin (Oregon 하구에 위치한 방사제 주위에서의 항공사진을 이용한 해안선 변화해석)

  • Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.155-164
    • /
    • 1997
  • A comprehensive and systematic field monitoring program was initiated since October 1989, in order to investigate the temporal and spatial variation of shoreline position at northern part of Pea Island, North Carolina. Aerial photographs were taken every two months on the shoreline extending from the US Coast Guard Station at the northern end of Pea Island to a point 6 miles to the south. Aerial photographs taken were digitized initially to obtain the shoreline position data. in which a wet-dry line visible on the beach was used to identify the position of shoreline. Since the wet-dry line does not represent the “true" shoreline .position but includes the errors due to the variations of wave run-up heights and tidal elevations at the time the photos taken, it is required to eliminate the tide and wave runup effects from the initially digitized shoreline .position data. Runup heights on the beach and tidal elevations at the time the aerial photographs taken were estimated using tide data collected at the end of the FRF pier and wave data measured from wave-rider gage installed at 4 km offshore, respectively A runup formula by Hunt (1957) was used to compute the run-up heights on the beach from the given deepwater wave conditions. With shoreline position data corrected for .wave runup and tide, both spatial and temporal variations of the shoreline positions for the monitoring shoreline were analyzed by examining local differences in shoreline movement and their time dependent variability. Six years data of one-mile-average shoreline indicated that there was an apparent seasonal variation of shoreline, that is, progradation of shoreline at summer (August) and recession at winter (February) at Pea Island. which was unclear with the uncorrected shoreline position data. Determination of shoreline position from aerial photograph, without regard to the effects of wave runup and tide, can lead to mis-interpretation for the temporal and spatial variation of shoreline changes.nges.

  • PDF

Spatial and Temporal Variability of Phytoplankton at Hwadang-ri, Goseng-gun (고성군 화당리 연안에서 식물플랑크톤의 계절 및 지점별 조성 변화)

  • Kang, Man Ki;Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.532-542
    • /
    • 2014
  • This study describe seasonal patterns in the variation of phytoplankton frequency in the water surface and basal layers and their spatial distributions at seven stations in Hwadang-ri, Goseng-gun in 2013. The phytoplankton community at Hwadang-ri was very diverse, with 60 taxa identified, representing three classes. Diatoms (Bacillariophyceae) exhibited the greatest diversity, with 41 taxa identified. These were followed by the dinoflagellates Dinophyceae, Cryptophyceae, and Eugenophyceae, with 16 taxa, two taxa, and one taxon, respectively. Water surfaces were shown with the relative individual density or abundance across areas. Except in January, Shannon-Weaver indices of diversity of the water surface layer were lower than those of the basal layer. In addition, evenness indices of the basal layer were higher than those of the water surface layer, except in January. For the community as a whole, the values of ${\beta}$-diversity were low for the seven stations: 1.125 for the water surface layer and 1.481 for the basal layer. Seasonal values for ${\beta}$-diversity were similar at the seven stations: 1.725 for the water surface layer and 1.347 for the basal layer. The phytoplankton community showed high taxonomic homogeneity in all four seasons, in addition to similar trends in seasonal development at depths in the same stations. However, the size distribution of the abundance and biomass showed a statistically significant west-east difference.

Characteristics of Spectra of Daily Satellite Sea Surface Temperature Composites in the Seas around the Korean Peninsula (한반도 주변해역 일별 위성 해수면온도 합성장 스펙트럼 특성)

  • Woo, Hye-Jin;Park, Kyung-Ae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.632-645
    • /
    • 2021
  • Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.

Review of Domestic Data Application Strategies for TNFD Implementation (TNFD 적용을 위한 국내 활용가능 데이터 적용 방안 검토)

  • Kim, Eun-Sub;Kim, Hoseok;Lee, Dong-Kun;Choi, Yun-Yeong;Kim, Da-Seul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.1
    • /
    • pp.55-70
    • /
    • 2024
  • The loss of biodiversity poses a significant threat not only to business sustainability and investment risk but also to societal well-being. Nature serves as a crucial driver for long-term business viability and economic prosperity. The Task Force on Nature-related Financial Disclosures (TNFD), established in September 2023, mandates that companies assess and disclose their impacts on nature. Despite this, many businesses lack a full understanding of their reliance on and impact upon natural capital and ecosystem services, leading to insufficient disclosures. This study evaluates the applicability of TNFD's assessment methodologies and indicators within a domestic context, highlighting the condition of nature and ecosystem services, and exploring potential synergies with national biodiversity policies. Our analysis suggests that TNFD necessitates a unique approach to the spatial and temporal data and methodologies traditionally employed in environmental impact assessments. This includes assessing the reciprocal influences of corporate activities on natural capital and ecosystem services via the LEAP framework. Moreover, in industries where the choice of specific indicators depends on unique sectoral traits, developing a standardized strategy for data and assessment indicators-adapted to local conditions-is crucial due to the variability in the availability of assessment tools and data. The proactive engagement of the private sector in ecosystem restoration projects is particularly promising for contributing towards national biodiversity objectives. Although TNFD is in its nascent phase, its global adoption by numerous companies signifies its potential impact. Successful implementation of TNFD is anticipated to deepen businesses' and financial institutions' understanding of natural capital and ecosystem services, thereby reinforcing their commitment to sustainable development.

Environmental and Socioeconomic Indicators of Virtual Water Trade: A Review

  • Odey, Golden;Adelodun, Bashir;Kim, Sang Hyun;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.211-211
    • /
    • 2020
  • The concept of virtual water has been largely applied in the study of regional, national, and global water flows with particular emphasis on water scarcity. Despite water traditionally being managed locally, certain global forces influence the local water resource scarcity/availability and hence virtual water exchanges worldwide. It is therefore of necessity that the significant forces be examined to understand the relationship between available water in a region and the variability and trends in environmental, social, and economic factors that are of utmost importance in the formulation of water resources management policies. This study therefore reviewed recent literature from 2003 - 2019 to determine the significant indicators of virtual water trade at different spatiotemporal levels. The study examined and compared the major approaches to virtual water trade flows accounting, and also identified and discussed policy implications and future research options concerning the analysis of virtual water trade. Available information has shown that virtual water trade is significantly influenced by economic (GDP, Demand-Supply of goods and services), geographical (Distance), institutional (population) and environmental (water availability, arable land, precipitation) factors. Reports further show that the selection of a given approach for virtual water trade flows accounting will depend on the scope of the study, the available datasets, and other research preferences. Accordingly, this study suggests that the adoption of multidisciplinary approaches to virtual water trade, taking into consideration the spatial and temporal variations in water resources availability and the complexity of environmental and socioeconomic factors will be pivotal for establishing the basis for the conservation of water resources worldwide.

  • PDF

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

Evaluation of the Applicability of Rice Growth Monitoring on Seosan and Pyongyang Region using RADARSAT-2 SAR -By Comparing RapidEye- (RADARSAT-2 SAR를 이용한 서산 및 평양 지역의 벼 생육 모니터링 적용성 평가 -RapidEye와의 비교를 통해-)

  • Na, Sang Il;Hong, Suk Young;Kim, Yi Hyun;Lee, Kyoung Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.55-65
    • /
    • 2014
  • Radar remote sensing is appropriate for rice monitoring because the areas where this crop is cultivated are often cloudy and rainy. Especially, Synthetic Aperture Radar (SAR) can acquire remote sensing information with a high temporal resolution in tropical and subtropical regions due to its all-weather capability. This paper analyzes the relationships between backscattering coefficients of rice measured by RADARSAT-2 SAR and growth parameters during a rice growth period. And we applied the relationships to crop monitoring of paddy rice in North Korea. As a result, plant height and Leaf Area Index (LAI) increased until Day Of Year (DOY) 234 and then decreased, while fresh weight and dry weight increased until DOY 253. Correlation coefficients revealed that Horizontal transmit and Horizontal receive polarization (HH)-polarization backscattering coefficients were correlated highly with plant height (r=0.95), fresh weight (r=0.92), vegetation water content (r=0.91), LAI (r=0.90), and dry weight (r=0.89). Based on the observed relationships between backscattering coefficients and variables of cultivation, prediction equations were developed using the HH-polarization backscattering coefficients. Concerning the evaluation for the applicability of the LAI distribution from RADARSAT-2, the LAI statistic was evaluated in comparison with LAI distribution from RapidEye image. And LAI distributions in Pyongyang were presented to show spatial variability for unaccessible areas.