• Title/Summary/Keyword: Temporal and spatial variability

Search Result 220, Processing Time 0.034 seconds

Spatial Estimation of soil roughness and moisture from Sentinel-1 backscatter over Yanco sites: Artificial Neural Network, and Fractal

  • Lee, Ju Hyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.125-125
    • /
    • 2020
  • European Space Agency's Sentinel-1 has an improved spatial and temporal resolution, as compared to previous satellite data such as Envisat Advanced SAR (ASAR) or Advanced Scatterometer (ASCAT). Thus, the assumption used for low-resolution retrieval algorithms used by ENVISAT ASAR or ASCAT is not applicable to Sentinel-1, because a higher degree of land surface heterogeneity should be considered for retrieval. The assumption of homogeneity over land surface is not valid any more. In this study, considering that soil roughness is one of the key parameters sensitive to soil moisture retrievals, various approaches are discussed. First, soil roughness is spatially inverted from Sentinel-1 backscattering over Yanco sites in Australia. Based upon this, Artificial Neural Networks data (feedforward multiplayer perception, MLP, Levenberg-Marquadt algorithm) are compared with Fractal approach (brownian fractal, Hurst exponent of 0.5). When using ANNs, training data are achieved from theoretical forward scattering models, Integral Equation Model (IEM). and Sentinel-1 measurements. The network is trained by 20 neurons and one hidden layer, and one input layer. On the other hand, fractal surface roughness is generated by fitting 1D power spectrum model with roughness spectra. Fractal roughness profile is produced by a stochastic process describing probability between two points, and Hurst exponent, as well as rms heights (a standard deviation of surface height). Main interest of this study is to estimate a spatial variability of roughness without the need of local measurements. This non-local approach is significant, because we operationally have to be independent from local stations, due to its few spatial coverage at the global level. More fundamentally, SAR roughness is much different from local measurements, Remote sensing data are influenced by incidence angle, large scale topography, or a mixing regime of sensors, although probe deployed in the field indicate point data. Finally, demerit and merit of these approaches will be discussed.

  • PDF

Water Quality Characteristics Along Mid-western Coastal Area of Korea (한국 서해 중부 연안역의 수질환경 특성)

  • Lim, Dhong-Il;Kang, Mi-Ran;Jang, Pung-Guk;Kim, So-Young;Jung, Hoi-Soo;Kang, Yang-Soon;Kang, Young-Shil
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.379-399
    • /
    • 2008
  • Spatial-temporal variations in physiochemical water qualities (temperature, salinity, DO, SPM, POC and nutrients) of surface and bottom waters were investigated along the mid-western coastal area (Taean Peninsula to Gomso Bay) of Korea. Spatial distribution patterns of temperature and salinity were mostly controlled by the physical mixing process of freshwater from Geum River and/or Gyunggi Bay with nearby coastal water. A strong tidal front is formed off Taean Peninsula during spring and summer. Seasonal variations in nutrient concentrations, lower in spring and summer and higher in fall and winter, are primarily regulated by magnitude of phytoplankton occurrence rather than freshwater loadings into the bay. Based on seasonal and spatial variability of physicochemical parameters, water quality of the study area can be divided into four water masses; Gyunggi Bay-influenced Water Mass (GBWM), Geum River-influenced Water Mass (GRWM), Yellow Sea Bottom Cold Water Mass (YSBCWM) and Cheonsu Bay Water Mass (CBWM). Water quality of the GBWM (Taean Peninsula coastal area), which has relatively low salinity and high concentrations of nutrients, is strongly controlled by the Gyunggi Bay coastal water, which is under influence of the Han River freshwater. In this water mass, the mixed layer is always developed by strong tidal mixing. As a result, a tidal front is formed along the offshore boundary of the mixed layer. Such tidal fronts probably play an important role in the distribution of phytoplankton communities, SPM and nutrients. The GRWM, with low salinity and high nutrients, especially during the flood summer season, is closely related to physiochemical properties of the Geum River. During the flood season, nutrient-enriched Geum River water mass extends up to 60 km away from the river mouth, potentially causing serious environmental problems such as eutrophication and unusual and/or noxious algal blooms. Offshore (<$30{\sim}40m$ in water depth) of the study area, YSBCWM coupled with a strong thermocline can be identified in spring-summer periods, exhibiting abundant nutrients in association with low temperature and limited biological activity. During spring and summer, a tidal front is formed in a transition zone between the coastal water mass and bottom cold water mass in the Yellow Sea, resulting in intensified upwelling and thereby supplying abundant nutrients to the GBWM and GRWM. Such cold bottom water mass and tidal front formation seems to play an important role in controlling water quality and further regulating physical ecosystem processes along mid-western Korean coastal area.

Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index (기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석)

  • Nam, Ki-Pyo;Kang, Jeong-Eon;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

Estimation of dryness index based on COMS to monitoring the soil moisture status at the Korean peninsula (한반도 토양수분 상태 모니터링을 위한 천리안 정지궤도 위성 기반 건조 지수 산정)

  • Jeong, Jaehwan;Baik, Jongjin;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • Satellite data have attracted attention on research such as natural disaster and climate changes because satellite data is very advantageous for observing a wide range of variability. However, there are still limited spatial and temporal resolutions in satellite data. To overcome these limitations, fusion of various sensors and combination of primary products are used. In this study, surface temperature data of 500 m spatial resolution was produced by fusion of GOCI and MI data of COMS. Also these LST are used with NDVI for estimating TVDI. Soil moisture condition of the Korean peninsula was evaluated by these TVDI and it was compared with SSMI derived from ASCAT surface soil moisture data. As a result, COMS TVDI and ASCAT SSMI showed similar spatial distribution and suggested the possibility of observing the soil moisture using COMS. Therefore, the TVDI estimations can be used as a basis for estimating the high resolution soil moisture, and the application of the COMS can be expanded for various studies.

The metallic composition of airborne particles in seven locations of Seoul city, Korea (대기 분진 중 중금속 성분의 공간적 농도분포 특성 비교: 서울시 7개 관측점을 중심으로)

  • Choi, Bae-Jin;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.143-151
    • /
    • 2003
  • In the present study, we made measurements of PM-bound metal concentrations from seven different urbanized locations in Seoul for the period covering March 2001 through May 2002. The measurement data were analyzed to explore the possible influences of spatial factors on metal distribution characteristics. To check for the importance of such aspects on metal distribution characteristics, the measured data were compared between different metals and between different sites by several criteria including (1) coefficient of variation (CV) values; (2) temporal variability; and (3) the abundance of strongly correlated pairs. The overall results of our study indicate strong diversity in the distribution characteristics of different metals. It is found that some metals (like Fe, Mn, and Pb) tend to exhibit strong compatibility among different study sites. However, no such compatibility appears to exist for certain metals like Cu. To account for the importance of spatial factors, complex relationships between source/sink processes and geochemical characteristics of a given metallic component may have to be examined in a systematic manner.

NEW PHOTOMETRIC PIPELINE TO EXPLORE TEMPORAL AND SPATIAL VARIABILITY WITH KMTNET DEEP-SOUTH OBSERVATIONS

  • Chang, Seo-Won;Byun, Yong-Ik;Shin, Min-Su;Yi, Hahn;Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Cha, Sang-Mok;Lee, Yongseok
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.5
    • /
    • pp.129-142
    • /
    • 2018
  • The DEEP-South (the Deep Ecliptic Patrol of the Southern Sky) photometric census of small Solar System bodies produces massive time-series data of variable, transient or moving objects as a by-product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques for faster access to a portion of the DEEP-South year-one data. Our new pipeline is designed to perform automated point source detection, robust high-precision photometry and calibration of non-crowded fields which have overlap with previously surveyed areas. In this paper, we show some examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discover 21 new periodic variables with period ranging between 0.1 and 31 days, including four eclipsing binary systems (detached, over-contact, and ellipsoidal variables), one white dwarf/M dwarf pair candidate, and rotating variable stars. We also recover astrometry (< ${\pm}1-2$ arcsec level accuracy) and photometry of two targeted near-earth asteroids, 2006 DZ169 and 1996 SK, along with the small- (~0.12 mag) and relatively large-amplitude (~0.5 mag) variations of their dominant rotational signals in R-band.

Normalized gestural overlap measures and spatial properties of lingual movements in Korean non-assimilating contexts

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • The current electromagnetic articulography study analyzes several articulatory measures and examines whether, and if so, how they are interconnected, with a focus on cluster types and an additional consideration of speech rates and morphosyntactic contexts. Using articulatory data on non-assimilating contexts from three Seoul-Korean speakers, we examine how speaker-dependent gestural overlap between C1 and C2 in a low vowel context (/a/-to-/a/) and their resulting intergestural coordination are realized. Examining three C1C2 sequences (/k(#)t/, /k(#)p/, and /p(#)t/), we found that three normalized gestural overlap measures (movement onset lag, constriction onset lag, and constriction plateau lag) were correlated with one another for all speakers. Limiting the scope of analysis to C1 velar stop (/k(#)t/ and /k(#)p/), the results are recapitulated as follows. First, for two speakers (K1 and K3), i) longer normalized constriction plateau lags (i.e., less gestural overlap) were observed in the pre-/t/ context, compared to the pre-/p/ (/k(#)t/>/k(#)p/), ii) the tongue dorsum at the constriction offset of C1 in the pre-/t/ contexts was more anterior, and iii) these two variables are correlated. Second, the three speakers consistently showed greater horizontal distance between the vertical tongue dorsum and the vertical tongue tip position in /k(#)t/ sequences when it was measured at the time of constriction onset of C2 (/k(#)t/>/k(#)p/): the tongue tip completed its constriction onset by extending further forward in the pre-/t/ contexts than the uncontrolled tongue tip articulator in the pre-/p/ contexts (/k(#)t/>/k(#)p/). Finally, most speakers demonstrated less variability in the horizontal distance of the lingual-lingual sequences, which were taken as the active articulators (/k(#)t/=/k(#)p/ for K1; /k(#)t/

Analysis on Winter Atmosphereic Variability Related to Arctic Warming (북극 온난화에 따른 겨울철 대기 변동성 분석 연구)

  • Kim, Baek-Min;Jung, Euihyun;Lim, Gyu-Ho;Kim, Hyun-Kyung
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.131-140
    • /
    • 2014
  • The "Barents Oscillation (BO)", first designated by Paul Skeie (2000), is an anomalous recurring atmospheric circulation pattern of high relevance for the climate of the Nordic Seas and Siberia, which is defined as the second Emperical Orthogonal Function (EOF) of monthly winter sea level pressure (SLP) anomalies, where the leading EOF is the Arctic Oscillation (AO). BO, however, did not attracted much interest. In recent two decades, variability of BO tends to increase. In this study, we analyzed the spatio-temporal structures of Atmospheric internal modes such as Arctic Oscillation (AO) and Barents Oscillation (BO) and examined how these are related with Arctic warming in recent decade. We identified various aspects of BO, not dealt in Skeie (2000), such as upper-level circulation and surface characteristics for extended period including recent decade and examined link with other surface variables such as sea-ice and sea surface temperature. From the results, it was shown that the BO showed more regionally confined spatial pattern compared to AO and has intensified during recent decade. The regional dipolelar structure centered at Barents sea and Siberia was revealed in both sea-level pressure and 500 hPa geopotential height. Also, BO showed a stronger link (correlation) with sea-ice and sea surface temperature especially over Barents-Kara seas suggesting it is playing an important role for recent Arctic amplification. BO also showed high correlation with Ural Blocking Index (UBI), which measures seasonal activity of Ural blocking. Since Ural blocking is known as a major component of Eurasian winter monsoon and can be linked to extreme weathers, we suggest deeper understanding of BO can provide a missing link between recent Arctic amplification and increase in extreme weathers in midlatitude in recent decades.

Interannual Variability of Common Squid Fishing Ground in the East Sea derived from Satellite and In-situ Data

  • Kim, Sang-Woo;Ahn, Ji-Suk;Lim, Jin-Wook;Jeong, Hee-Dong;Park, Jong-Hwa
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1363-1371
    • /
    • 2013
  • In this study, we estimate the interannual spatial and temporal distributions of fishing grounds at night in the East Sea based on satellite and in-situ data. We observe that the $15^{\circ}C$ thermal front moves in the north-south direction according to the movement of the warm water (above $18^{\circ}C$) in the Tsushima Warm Current (TWC) area, forcing the cold water area (below $10^{\circ}C$) to either expand or shrink. The interannual variations of sea surface temperature (SST) in winter represented by the indicator SST of $6^{\circ}C$ are consistent with the east-west zonal areas in the central East Sea which represented over $1^{\circ}C$ standard deviation of SST in February during 1990-2000. Annual SST in the fishing grounds of common squid fishing vessels, observed both by fishing vessels and satellites range from 9-$22^{\circ}C$, with the satellite-observed data having a larger range than the fishing vessel-based ones. The interannual distributions of the common squid fishing grounds in the East Sea are mostly concentrated in the TWC area in the southwestern part of the East Sea and in the coast of southern Honshu and Hokkaido in Japan. The interannual distributions of the nighttime fishing vessels are consistent with the catches investigated from the fishing vessel.

Evaluation of Drought Indices using the Drought Records (관측 자료를 이용한 가뭄지수의 평가)

  • Kim, Gwang-Seob;Lee, Jun-Won
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.639-652
    • /
    • 2011
  • In this study, the suitability of drought indices was analyzed using the quantified drought records from official reports, newspapers and drought indices estimated using precipitation and air temperature data of 69 weather stations from 1973 to 2009. Test statistics of the suitability of meteorological drought indices were evaluated using the ROC analysis. Results demonstrated that PN shows the best relationships with drought records. SPI3 and Deciles Distribution Ratio also show good relationships with drought records and their variability according to the administrative divisions is relatively small. Results of the analysis of the spatial and temporal variability of drought and the accuracy of the drought indices can be used to evaluate the accuracy of drought indices in drought monitoring and prediction, and to select the best index in drought management.