The spatial and temporal behaviors and fluctuations of the cold water that appeared in the South East Sea and the East Sea coast from 2016 to 2017 were investigated. The water temperature drop was large in the east coast from April to June and the southeast coast from July to September, and the temperature drop period was longer in the southeast coast. The water temperature fluctuated sensitively to the wind direction, and it gradually decreased in the southwest wind but rose as if jumping in the northeast wind. Wind stress and surface water temperature had an inverse correlation, which was larger in Bukhang-Idukseo, and decreased toward the north of Guryongpo. The cold water appeared mainly in Geojedo-Pohang after 1 to 2 days when the southwest wind was strong, but when the wind became weak, it shrank to the Idukseo (Ulgi-Gampo) and extended into the open sea in a tongue shape. Cold water was distributed only in Samcheok-Toseong in mid-May, Idukseo-Guryongpo and Hupo-Jukbyeon-Samcheok from late May to mid-July, and Bukhang-Idukseo in August-September. The intensity of cold water was greatest in mid-August, and the center of cold water descended from the east coast to the southeast coast from spring to summer. The water temperature fluctuation was dominant at the periods of 1 d and 7-21 d. In wavelet spectrum analysis of water temperature and wind, wind speed increase-water temperature decrease showed phase difference of 12 h in 2 d, 18 h in 3 d, 1.5 d in 4-8 d, and 2-3 d in 8-24 d period. The correlation between the two parameters was large in Geojedo and Namhang, Bukhang-Idukseo, Guryongpo-Jukbyeon, and Samcheok-Toseong. Monitoring stations with high correlation in all periods were generally parallel to the monsoon direction.
The sound of finless porpoises Neophocaena asiaeorientalis was recorded with an acoustic recorder to confirm their emergence in the South Sea of South Korea in February, June, and November 2020. Sea water temperature and salinity were also measured. In addition, a sighting survey was conducted to observe the behavior of the finless porpoises and the marine environment, and the clicks of the finless porpoises were recorded every day. The results showed that they always emerged in the survey area. The finless porpoises mainly foraged, whereas some played or rested. The water temperature range of areas where the finless porpoises emerged was 7.5-23.5℃. Assuming that the number of clicks corresponds to the number of finless porpoises, the finless porpoises emerged the most during spring. The emergence decreased during winter and was the lowest during autumn. The finless porpoises emerged more during the daytime than during the nighttime in all seasons, indicating a temporal difference in the usage of the survey area. This might be due to the movement of prey organisms according to regional characteristics. A long-term survey and research on habitat use and environment is needed to manage and conserve the finless porpoises.
Lee, Byung Chan;Kim, Ah Ran;Kim, Eun Kyung;Kim, Sun Jeong;Kim, Sang Jun
Clinical Pain
/
v.19
no.1
/
pp.8-15
/
2020
Objective: To compare the therapeutic efficacy of the bone marrow aspirate concentrate (BMAC)- platelet-rich plasma (PRP) complex with hyaluronic acid in patients with knee osteoarthritis. Method: Thirty-four patients with knee osteoarthritis participated in this study. Seventeen patients in the study group underwent BMAC and PRP extraction followed by intra-articular injection of BMAC-PRP complex within affected knee. Seventeen patients in the control group underwent intra-articular injection of hyaluronic acid. Knee injury, osteoarthritic outcome score (KOOS), and EuroQol-5D (EQ-5D) questionnaire were evaluated before, one month, three months, and six months after the injection. Results: There were statistically significant temporal differences in total KOOS scores in both BMAC-PRP and HA groups. However, there were no significant group difference in the study period. In the Sports and Recreational Function Scale, there was statistically significant improvement in the BMAC-PRP group compared to the HA group at three months (p=0.041). There were no side effects or complications in both groups. Conclusion: Intra-articular injection of BMAC-PRP showed better functional recovery in the OA at three months and this can be an alternative treatment in terms of functional recovery in the OA in addition to the decrease of pain.
Journal of The Korean Society of Integrative Medicine
/
v.10
no.3
/
pp.233-246
/
2022
Purpose : The study aims to determine the effects of virtual and non-virtual realities in a normal person's mirror walk on gait characteristics. Methods : Twenty male adults (Age: 27.8 ± 5.8 years) participated in the study. Reflection markers were attached to the subjects for motion analysis, and they walked in virtual reality environments with mirrors by wearing goggles that showed them the virtual environments. After walking in virtual environments, the subjects walked in non-virtual environments with mirrors a certain distance away after taking a 5 min break. To prevent the order effect caused by the experiential difference of gait order, the subjects were randomly classified into groups of 10 and the order was differentiated. During each walk, an infrared camera was used to detect motion and the marker positions were saved in real time. Results : Comparison between the virtual and non-virtual reality mirror walks showed that the movable range of the leg joints (ankle, knee, and hip joints), body joints (sacroiliac and atlantoaxial joints), and arm joints (shoulder and wrist joints) significantly differed. Temporal characteristics showed that compared to non-virtual gaits, the virtual gaits were slower and the cycle time and double limb support time of virtual gaits were longer. Furthermore, spacial characteristics showed that compared to non-virtual gaits, virtual gaits had shorter steps and stride lengths and longer stride width and horizontally longer center of movement. Conclusion : The reduction in the joint movement in virtual reality compared to that in non-virtual reality is due to adverse effects on balance and efficiency during walking. Moreover, the spatiotemporal characteristics change based on the gait mechanisms for balance, exhibiting that virtual walks are more demanding than non-virtual walks. However, note that the subject group is a normal group with no abnormalities in gait and balance and it is unclear whether the decrease in performance is due to the environment or fear. Therefore, the effects of the subject group's improvement and fear on the results need to be analyzed in future studies.
This study compares the three detection algorithms of East Asian summer atmospheric rivers (ARs). The algorithms developed by Guan and Waliser (GW15), Park et al. (P21), and Tian et al. (T23) are particularly compared in terms of the AR frequency, the number of AR events, and the AR duration for the period of 2016-2020. All three algorithms show similar spatio-temporal distributions of AR frequency, centered along the edge of the North Pacific high. The maximum AR frequency gradually shifts northward in early summer as the edge of the North Pacific High expands, and retreats in late summer. However, the detailed pattern and the maximum value differ among the algorithms. When the AR frequency is decomposed into the number of AR events and the AR duration, the AR frequencies detected by GW15 and P21 are equally explained by both factors. However, the number of AR events primarily determine the AR frequency in T23. This difference occurs as T23 utilizes the machine learning algorithm applied to moisture field while GW15 and P21 apply the threshold value to moisture transport field. When evaluating AR-related precipitation, the ARs detected by P21 show the closest relationship with total precipitation in East Asia by up to 60%. These results indicate that AR detection in the East Asian summer is sensitive to the choice of the detection algorithm and can be optimized for the target region.
Hyunpil Yoon;Bo Hyun Jung;Ki-Yeon Yoo;Jong-Bin Lee;Heung-Sik Um;Beom-Seok Chang;Jae-Kwan Lee
Journal of Periodontal and Implant Science
/
v.53
no.4
/
pp.248-258
/
2023
Purpose: This study aimed to characterize the early stages of periodontal disease and determine the optimal period for its evaluation in a mouse model. The association between the duration of ligation and its effect on the dentogingival area in mice was evaluated using micro-computed tomography (CT) and histological analysis. Methods: Ninety mice were allocated to an untreated control group or a ligation group in which periodontitis was induced by a 6-0 silk ligation around the left second maxillary molar. Mice were sacrificed at 1, 2, 3, 4, 5, 8, 11, and 14 days after ligature placement. Alveolar bone destruction was evaluated using micro-CT. Histological analysis was performed to assess the immune-inflammatory processes in the periodontal tissue. Results: No significant difference in alveolar bone loss was found compared to the control group until day 3 after ligature placement, and a gradual increase in alveolar bone loss was observed from 4 to 8 days following ligature placement. No significant between-group differences were observed after 8 days. The histological analysis demonstrated that the inflammatory response was evident from day 4. Conclusions: Our findings in a mouse model provide experimental evidence that ligature-induced periodontitis models offer a consistent progression of disease with marginal attachment down-growth, inflammatory infiltration, and alveolar bone loss.
Shiyu Liu;Hongyan Qiao;Lianhong Yuan;Yuan Yuan;Jun Liu
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.6
/
pp.1530-1544
/
2023
Data monitoring is an important foundation of modern science. In most cases, the monitoring data is time-series data, which has high application value. The deep learning algorithm has a strong nonlinear fitting capability, which enables the recognition of time series by capturing anomalous information in time series. At present, the research of time series recognition based on deep learning is especially important for data monitoring. Deep learning algorithms require a large amount of data for training. However, abnormal sample is a small sample in time series, which means the number of abnormal time series can seriously affect the accuracy of recognition algorithm because of class imbalance. In order to increase the number of abnormal sample, a data augmentation method called GANBATS (GAN-based Bi-LSTM and Attention for Time Series) is proposed. In GANBATS, Bi-LSTM is introduced to extract the timing features and then transfer features to the generator network of GANBATS.GANBATS also modifies the discriminator network by adding an attention mechanism to achieve global attention for time series. At the end of discriminator, GANBATS is adding averagepooling layer, which merges temporal features to boost the operational efficiency. In this paper, four time series datasets and five data augmentation algorithms are used for comparison experiments. The generated data are measured by PRD(Percent Root Mean Square Difference) and DTW(Dynamic Time Warping). The experimental results show that GANBATS reduces up to 26.22 in PRD metric and 9.45 in DTW metric. In addition, this paper uses different algorithms to reconstruct the datasets and compare them by classification accuracy. The classification accuracy is improved by 6.44%-12.96% on four time series datasets.
Jang, Hye Sook;Gim, Gyung Mee;Jeong, Sun Jin;Kim, Jae Soon
Journal of People, Plants, and Environment
/
v.22
no.2
/
pp.127-143
/
2019
This study investigates the color stimuli of two varieties of foliage plants by extracting electroencephalogram, electrocardiogram and physiology activity data from 30 participants in their 50s or older. Changes in the physiological activity of subjects against six color stimuli were examined. The stimulus to real green plants 'Silver Queen' was set as the control group, and was compared with other groups including the stimulus to real 'Angel' plants and four stimuli to artificial colors (two color images and color schemes of the same green and red plants). Compared to the five groups, the relative theta power spectrum (RT) and the ratio of alpha to high beta (RAHB) increased in the subjects exposed to real green plants. This result demonstrates that the green plant ('Silver Queen') increases the stability, relaxation, and internal concentration of subjects in a proper state of awakening. The result of this experiment showed a statistically significant difference in the level of RT when subjects were exposed to the groups of real green and red plants. This finding indicates that the green plant increases internal concentration more than the red plant. RT and the relative low beta power spectrum (RLB) in the groups of natural colors were higher than the groups of artificial colors when subjects focused their mind on the two types of real plants. However, the level of relative mid beta power spectrum (RMB), ratio of SMR to theta (RST), ratio of mid beta to theta (RMT), relative high beta power spectrum (RHB), and spectral edge frequency 95% were higher when subjects were exposed to the photos and colors scheme of plants than when they were exposed to real plants. The subjects experienced more "comfortable" emotions when they were looking at plants with green colors. Overall, it is recommended to use the natural colors of real plants in places where which stability and relaxation are required. On the contrary, the artificial colors of plants such as their photos and color schemes are useful in places where a high level of concentration is required in a short period of time.
Crop classification plays a vitalrole in monitoring agricultural landscapes and enhancing food production. In this study, we explore the effectiveness of Long Short-Term Memory (LSTM) models for crop classification, focusing on distinguishing between apple and rice crops. The aim wasto overcome the challenges associatedwith finding phenology-based classification thresholds by utilizing LSTM to capture the entire Normalized Difference Vegetation Index (NDVI)trend. Our methodology involvestraining the LSTM model using a reference site and applying it to three separate three test sites. Firstly, we generated 25 NDVI imagesfrom the Sentinel-2A data. Aftersegmenting study areas, we calculated the mean NDVI values for each segment. For the reference area, employed a training approach utilizing the NDVI trend line. This trend line served as the basis for training our crop classification model. Following the training phase, we applied the trained model to three separate test sites. The results demonstrated a high overall accuracy of 0.92 and a kappa coefficient of 0.85 for the reference site. The overall accuracies for the test sites were also favorable, ranging from 0.88 to 0.92, indicating successful classification outcomes. We also found that certain phenological metrics can be less effective in crop classification therefore limitations of relying solely on phenological map thresholds and emphasizes the challenges in detecting phenology in real-time, particularly in the early stages of crops. Our study demonstrates the potential of LSTM models in crop classification tasks, showcasing their ability to capture temporal dependencies and analyze timeseriesremote sensing data.While limitations exist in capturing specific phenological events, the integration of alternative approaches holds promise for enhancing classification accuracy. By leveraging advanced techniques and considering the specific challenges of agricultural landscapes, we can continue to refine crop classification models and support agricultural management practices.
Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.