• Title/Summary/Keyword: Temporal Difference

Search Result 809, Processing Time 0.026 seconds

A Methodology for 3-D Optimally-Interpolated Satellite Sea Surface Temperature Field and Limitation (인공위성 해수면온도 3-D 최적 내삽 합성장 생산 방법과 한계점)

  • Park, Kyung-Ae;Kim, Young-Ho
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.223-233
    • /
    • 2009
  • Three-dimensional (3-D) optimally-interpolated sea surface temperature (SST) field was produced by using AQUA/AMSR-E satellite data, and its limitations were described by comparing the temporal average of sea surface temperatures. The 3-D OI (Optimum Interpolation) SST showed a small error of less than $0.05^{\circ}C$ in the central North Pacific, but yielded large errors of greater than $0.4^{\circ}C$ at the coastal area where the satellite microwave data were not available. OI SST composite around pixels with no observation due to heavy rainfall or cloudy pixels had estimation errors of $0.1-0.15^{\circ}C$. Comparison with temporal means showed a tendency that overall OI SSTs were underestimated around heavy cloudy pixels and smoothed out by reducing the magnitude of SST fronts. In the low-latitude areas near the equator, OI SST field produced discontinuity, originated from the window size for the OI procedure. This was mainly caused by differences in the spatial scale of oceanic features. Infernal Rossby deformation radius, as a measure of spatial stale, showed dominant latitudinal variations with O(1) difference in the North Pacific. This study suggests that OI SST methodology should consider latitudinally-varying size of window and the characteristics of spatial scales of oceanic phenomena with substantial dependency on latitude and vertical structure of density.

Influences of Fractionation of Stable Isotopic Composition of Rain and Snowmelt on Isotopic Hydrograph Separation (강우와 융설의 안정동위원소 변동에 의한 동위원소 수문분리법의 계통오차계산)

  • Lee, Jeonghoon;Koh, Dong-Chan;Choo, Mi Kyung
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • An isotopic hydrograph separation technique has been able to determine the contribution of new water (event water such as rain or snowmelt) and old water (pre-event water like groundwater) to a stream hydrograph for last several decades using stable water isotopes. It is based on the assumption that the isotopic compositions of both new water and old water at a given instant in time are known and the stream water is a mixture of the two waters. In this study, we show that there is a systematic error (standard error in the new water fraction) in the isotopic hydrograph separation if the average isotopic compositions of new water were used ignoring the temporal variations of those of new water. The standard error in the new water fraction is caused by: (1) the isotopic difference between the average value and temporal variations of new water; (2) the new water fraction as runoff contributing to the stream during rainfall or spring melt; and (3) the isotopic differences between new and old water (inversely). The standard error is large, in particular, when new water dominates the stream flow, such as runoff during intense rainfall and in areas of low infiltration during spring melt. To reduce the error in the isotopic hydrograph separation, incorporation of fractionation in the isotopic composition of new water observed at a point should be considered with simultaneous sampling of new water, old water and stream water.

THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF THE MANDIBULAR CONDYLE DURING UNILATERAL CLENCHING (편측저작시 하악골 과두의 응력분포에 관한 삼차원 유한요소분석적 연군)

  • Nam, Do-Hyun;Hoe, Seong-Joo;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.3
    • /
    • pp.517-534
    • /
    • 1997
  • It has been held that excessive mechanical forces to the osseous and soft tissues of the TMJ result in joint dysfunction. Understanding the stress pattern on TMJ is very important in TMJ research. But, it is very difficult to measure directly the biomechanical stress distribution in the TMJ when the mandible is loaded. Therefore, stress distribution in the TMJ during functional movement was studied through animal experiment or mathematical model. It was observed and compared the stress distribution occuring in the working and balancing condyle when lower right canine, lower right first molar and lower right second molar were clenched by the three dimensional finite element analysis. Also, stress distribution in the working and balancing condyles were observed and compared when $20^{\circ}$ forward and buccal bite forces were applied to the first molar. The results were as follows : 1. Stress distribution in the condyles during unilateral clenching of the first molar, second molar, canine showed no difference. In the working condyle, tensile force was concentrated on the lateral aspect of the condylar articular surface and condylar neck. And compressive force was concentrated on the anteromedial and lateral aspect of condyle. In the balancing condyle, tensile and compressive forces were concentrated on the lateral aspect of the condylar articular surface and stress transmission to the temporal bone was not observed. 2. When lateral forces were applied to the first molar, tensile forces were concentrated on the medial aspect of the condylar neck and condylar posterior surface in working and balancing condyle. Compressive force was concentrated on the anteromedial and lateral surface of the condyle and stress transmission to the temporal bone was not observed. 3. During unilateral clenching, stress in the working condyle decreased as the occlusal load moved posteriorly while the stress in the balancing condyle increased. when lateral force was applied to first molar, the incremental amount of stress was greater than vertical load. 4. During unilateral clenching, the average balancing/working condyle stress ratio was 2.52. There was a greater concentration of stress in the balancing condyle. The ratio increased as the occlusal load moved posteriorly and decreased considerably when lateral forces were applied to the first molar.

  • PDF

Variation of design flood according to the temporal resolution and periods of rainfall (강우의 시간해상도와 자료기간에 따른 설계홍수량의 변동성)

  • Kim, Min-Seok;Lee, Jung-Hwan;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.599-606
    • /
    • 2018
  • Most hydrological analysis such as probability rainfall and rainfall time distributions have typically carried out based on hourly rainfall and rainfall - runoff analysis have carried out by applying different periods of rainfall time distribution and probability rainfall. In this study, to quantify the change of design flood due to the data type (hourly and minutely rainfall data) and the probability rainfall and application of different data period to the rainfall time distribution, probability rainfall is calculated by point frequency analysis according to data type and period and rainfall time distribution was calculated by Huff's quartile distributions. In addition, the change analysis of design flood was carried out by rainfall - runoff analysis applying different data periods of design rainfall time distribution. and probability rainfall. As a result, rainfall analysis using minute rainfall data was more accurate and effective than using hourly rainfall data. And the design flood calculated by applying different data period of rainfall time distribution and probability rainfall made a large difference than by applying different data type. It is expected that this will contribute to the hydrological analysis using minutely rainfall.

Application of Multi-Dimensional Precipitation Models to the Sampling Error Problem (관측오차문제에 대한 다차원 강우모형의 적용)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.441-447
    • /
    • 1997
  • Rainfall observation using rain gage network or satellites includes the sampling error depending on the observation methods or plans. For example, the sampling using rain gages is continuous in time but discontinuous in space, which is nothing but the source of the sampling error. The sampling using satellites is the reverse case that continuous in space and discontinuous in time. The sampling error may be quantified by use of the temporal-spatial characteristics of rainfall and the sampling design. One of recent works on this problem was done by North and Nakamoto (1989), who derived a formulation for estimating the sampling error based on the temporal-spatial rainfall spectrum and the design scheme. The formula enables us to design an optimal rain gage network or a satellite operation plan providing the statistical characteristics of rainfall. In this paper the formula is reviewed and applied for the sampling error problems using several multi-dimensional precipitation models. The results show the limitation of the formulation, which cannot distinguish the model difference in case the model parameters can reproduce similar second order statistics of rainfall. The limitation can be improved by developing a new way to consider the higher order statistics, and eventually the probability density function (PDF) of rainfall.

  • PDF

Change in Axial Rotation of Toric Soft Contact Lens according to Tear Volume (눈물양에 따른 토릭 소프트콘택트렌즈의 축 회전양 변화)

  • Seo, Woo Hyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.445-454
    • /
    • 2015
  • Purpose: The present study was aimed to investigate the effect of tear volume on a change of axial rotation according to wearing time of toric soft contact lens and gaze directions. Method: Toric soft contact lenses with double thin zone design applied on 62 eyes. Then, changes in non invasive tear film break-up time and the rotational direction/amount of lens when changing gaze direction were respectively measured after 15 minutes and 6 hours of lens wear. Results: Lens rotation to temporal direction was more found when changing gaze direction after lens wear. However, its rotation was varied according to wearing time and the subjects' tear volume. Furthermore, the frequency of lens rotation to temporal direction was higher in dry eyes compared with normal eyes at nearly all gaze directions after 15 minutes and 6 hour of lens wear. The rotational amount of lens was generally greater in dry eyes after 15 minutes of lens wear. However, its difference between normal eyes and dry eyes was not great after 6 hours of lens wear. Conclusion: The present study revealed that axial rotation of toric soft contact lens was varied according to the wearer's tear volume and lens rotational patterns at the initial, and extending periods of lens wear were different. The change in rotational pattern of toric soft contact lens from these results means the possibility of visual change after extending lens wear, and the identification of its correlation with tear volume suggests the necessity of considering factors for choosing appropriate toric soft contact lens.

Spatial and Temporal Characteristics of Distributions of Bacteria in the Mideast Part of the Yellow Sea (황해 중동부해역에서 박테리아의 시.공간적 분포의 특징)

  • 조병철;강연식
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.145-151
    • /
    • 1994
  • Investigations on distributions of bacterial abundance and production in the mideast part of the Yellow Sea were made in August and October, 1991 as a part of study of "The Exploitation Research of Marine Resources on the Yellow Sea". Here, we report spatial and temporal characteristics of distributions of bacteria in the mideast part of the Yellow Sea including data reported by Son (1989) for the same area. During the whole study period, bacterial abundance ranged from 0.5${\times}$10/SUP 8/ 1/SUP -1/ to 19${\times}$10/SUP 8/ 1/SUP -1/. Seasonal changes and the difference between two studies in bacterial abundance were less than 3.5 fold ar each station in the study area, except October, 1991. An interesting result was that bacterial abundances except October, 1991 were generally lower than those expected from the established relationship between chlorophyll and bacterial abundance in the oceans. For the bacterial abundance observed in October 1991, controlling factor(s) of bacteria might be different from the rest of study period. Bacterial production (0.1∼2.9ug C 1/SUP -1/ d/SUP -1/) comprised a small fraction (18${\pm}$11%) of primary production. Though data are limited, low bacterial abundances compared to chlorophyll concentration and low values of bacterial production to primary production seemed to occur in the mideast part of the Yellow Sea. Unravelling the causes of these phenomena would be necessary to understand the ecology of bacteria in the region.

  • PDF

Assessment of Temporal Trend of Radiation Dose to the Public Living in the Large Area Contaminated with Radioactive Materials after a Nuclear Power Plant Accident (원전사고 후 광역의 방사성 오염부지 내 거주민에 대한 시간에 따른 피폭방사선량 평가)

  • Go, A Ra;Kim, Min Jun;Cho, Nam Chan;Seol, Jeung Gun;Kim, Kwang Pyo
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • It has been about 5 years since the Fukushima nuclear power plant accident, which contaminated large area with radioactive materials. It is necessary to assess radiation dose to establish evacuation areas and to set decontamination goal for the large contaminated area. In this study, we assessed temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after the Fukushima nuclear power plant accident. The dose assessment was performed based on Chernobyl model and RESRAD model for two evacuation lift areas, Kawauchi and Naraha. It was reported that deposition densities in the areas were $4.3{\sim}96kBq\;m^{-2}$ for $^{134}Cs$, $1.4{\sim}300kBq\;m^{-2}$ for $^{137}Cs$, respectively. Radiation dose to the residents depended on radioactive cesium concentrations in the soil, ranging $0.11{\sim}2.4mSv\;y^{-1}$ at Kawauchi area and $0.69{\sim}1.1mSv\;y^{-1}$ at Naraha area in July 2014. The difference was less than 5% in radiation doses estimated by two different models. Radiation dose decreased with calendar time and the decreasing slope varied depending on dose assessment models. Based on the Chernobyl dosimetry model, radiation doses decreased with calendar time to about 65% level of the radiation dose in 2014 after 1 year, 11% level after 10 years, and 5.6% level after 30 years. RESRAD dosimetry model more slowly decreased radiation dose with time to about 85% level after 1 year, 40% level after 10 years, and 15% level after 30 years. The decrease of radiation dose can be mainly attributed into radioactive decays and environmental transport of the radioactive cesium. Only environmental transports of radioactive cesium without consideration of radioactive decays decreased radiation dose additionally 43% after 1 year, 72% after 3 years, 80% after 10 years, and 83% after 30 years. Radiation doses estimated with cesium concentration in the soil based on Chernobyl dosimetry model were compared with directly measured radiation doses. The estimated doses well agreed with the measurement data. This study results can be applied to radiation dose assessments at the contaminated area for radiation safety assurance or emergency preparedness.

A Review of Change Detection Techniques using Multi-temporal Synthetic Aperture Radar Images (다중시기 위성 레이더 영상을 활용한 변화탐지 기술 리뷰)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.737-750
    • /
    • 2019
  • Information of target changes in inaccessible areas is very important in terms of national security. Fast and accurate change detection of targets is very important to respond quickly. Spaceborne synthetic aperture radar can acquire images with high accuracy regardless of weather conditions and solar altitude. With the recent increase in the number of SAR satellites, it is possible to acquire images with less than one day temporal resolution for the same area. This advantage greatly increases the availability of change detection for inaccessible areas. Commonly available information in satellite SAR is amplitude and phase information, and change detection techniques have been developed based on each technology. Those are amplitude Change Detection (ACD), Coherence Change Detection (CCD). Each algorithm differs in the preprocessing process for accurate automatic classification technique according to the difference of information characteristics and the final detection result of each algorithm. Therefore, by analyzing the academic research trends for ACD and CCD, each technologies can be complemented. The goal of this paper is identifying current issues of SAR change detection techniques by collecting research papers. This study would help to find the prerequisites for SAR change detection and use it to conduct periodic detection research on inaccessible areas.

Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data (KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교)

  • Chung, Minkyung;Han, Youkyung;Choi, Jaewan;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1427-1443
    • /
    • 2018
  • Object-based image analysis (OBIA) allows higher computation efficiency and usability of information inherent in the image, as it reduces the complexity of the image while maintaining the image properties. Superpixel methods oversegment the image with a smaller image unit than an ordinary object segment and well preserve the edges of the image. SLIC (Simple linear iterative clustering) is known for outperforming the previous superpixel methods with high image segmentation quality. Although the input parameter for SLIC, number of superpixels has considerable influence on image segmentation results, impact analysis for SLIC parameter has not been investigated enough. In this study, we performed optimal parameter analysis and evaluation of change detection for SLIC-based superpixel techniques using KOMPSAT data. Forsuperpixel generation, three superpixel methods (SLIC; SLIC0, zero parameter version of SLIC; SNIC, simple non-iterative clustering) were used with superpixel sizes in ranges of $5{\times}5$ (pixels) to $50{\times}50$ (pixels). Then, the image segmentation results were analyzed for how well they preserve the edges of the change detection reference data. Based on the optimal parameter analysis, image segmentation boundaries were obtained from difference image of the bi-temporal images. Then, DBSCAN (Density-based spatial clustering of applications with noise) was applied to cluster the superpixels to a certain size of objects for change detection. The changes of features were detected for each superpixel and compared with reference data for evaluation. From the change detection results, it proved that better change detection can be achieved even with bigger superpixel size if the superpixels were generated with high regularity of size and shape.