• Title/Summary/Keyword: Temporal Difference

Search Result 809, Processing Time 0.034 seconds

The Improvement of Infrared Brightness Temperature Difference Method for Detecting Yellow Sand Dust

  • Ha, Jong-Sung;Kim, Jae-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.149-152
    • /
    • 2007
  • The detection of yellow sand dust using satellite has been utilized from various bands from ultraviolet to infrared channels. Among them, Infrared channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. Especially, brightness temperature difference between 11 and 12{\mu}m(BTD) was often used to distinguish between water cloud and yellow sand, because Ice and liquid water particles preferentially absorb longer wavelengths while aerosol particles preferentially absorb shorter wavelengths. We have found that the BTD significantly depends on surface temperature, emissivity, and zenith angle and thereby the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then subtracted it from BTD. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT-1R, to verify the reliability of the retrieved signal in conjunction with forecasted wind information. The statistical score test illustrated that this newly developed algorithm showed a promising result for detecting mineral dust by reducing the errors in the current BTD method.

  • PDF

Human Activity Recognition in Smart Homes Based on a Difference of Convex Programming Problem

  • Ghasemi, Vahid;Pouyan, Ali A.;Sharifi, Mohsen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.321-344
    • /
    • 2017
  • Smart homes are the new generation of homes where pervasive computing is employed to make the lives of the residents more convenient. Human activity recognition (HAR) is a fundamental task in these environments. Since critical decisions will be made based on HAR results, accurate recognition of human activities with low uncertainty is of crucial importance. In this paper, a novel HAR method based on a difference of convex programming (DCP) problem is represented, which manages to handle uncertainty. For this purpose, given an input sensor data stream, a primary belief in each activity is calculated for the sensor events. Since the primary beliefs are calculated based on some abstractions, they naturally bear an amount of uncertainty. To mitigate the effect of the uncertainty, a DCP problem is defined and solved to yield secondary beliefs. In this procedure, the uncertainty stemming from a sensor event is alleviated by its neighboring sensor events in the input stream. The final activity inference is based on the secondary beliefs. The proposed method is evaluated using a well-known and publicly available dataset. It is compared to four HAR schemes, which are based on temporal probabilistic graphical models, and a convex optimization-based HAR procedure, as benchmarks. The proposed method outperforms the benchmarks, having an acceptable accuracy of 82.61%, and an average F-measure of 82.3%.

Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data (환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가)

  • Heo, Sung-Gu;Kim, Nam-Won;Yoo, Dong-Sun;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

Change Pattern Analysis of the Salinity, 55 and DO Concentrations in Jumunjin Harbour, Gangneung (강릉 주문진항 염도, 탁도 및 응존산소 농도 변화양상 분석)

  • Cho, Hong-Yeon;Kim, Chang-Il;Lee, Dal-Soo;Han, Dong-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.385-398
    • /
    • 2007
  • It was analysed that spatial and temporal change patterns of general water quality constituents were measured monthly from 2002 to 2005 in Jumunjin Harbour. The measured constituents are temperature, salinity, pH, SS and DO. Concentration difference of upper lower layer for general water quality constituents was small. Temperature and DO concentration show the clear difference at temporal concentration change pattern, but SS, pH and salinity have irregular change pattern. Also, water quality improvement effect of seawater exchange facilities and sewage treatment plants is analysed quantitatively using averaged spatial and temporal data set. From this result, it is found that effect of sewage treatment plants is small and seawater exchange facilities at zone 1 and 2 is clear concentration reduction effect to be about 26% and 16%, respectively. After sewage treatment plants operation, DO concentration reduced about 10% at inner zone of Jumunjin Harbour, the other side, after seawater exchange facilities concentration DO concentration increased about 10%. DO concentration at 2005 estimated little than that of 2002, it is concluded that a yearly change of DO concentration has about 10%.

Analyzing Difference of Urban Forest Edge Vegetation Condition by Land Cover Types Using Spatio-temporal Data Fusion Method (시공간 위성영상 융합기법을 활용한 도시 산림 임연부 인접 토지피복 유형별 식생 활력도 차이 분석)

  • Sung, Woong Gi;Lee, Dong Kun;Jin, Yihua
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.279-290
    • /
    • 2018
  • The importance of monitoring and assessing the status of urban forests in the aspect of urban forest management is emerging as urban forest edges increase due to urbanization and human impacts. The purpose of this study was to investigate the status of vegetation condition of urban forest edge that is affected by different land cover types using $NDVI_{max}$ images derived from FSDAF (Flexible Spatio-temporal DAta Fusion). Among 4 land cover types,roads had the greatest effect on the forest edge, especially up to 30m, and it was found to affect up to 90m in Seoul urban forest. It was also found that $NDVI_{max}$ increased with distance away from the forest edge. The results of this study are expected to be useful for assessing the effects of land cover types and land cover change on forest edges in terms of urban forest monitoring and urban forest management.

A Study on Photovoltaic Panel Monitoring Using Sentinel-1 InSAR Coherence (Sentinel-1 InSAR Coherence를 이용한 태양광전지 패널 모니터링 효율화 연구)

  • Yoon, Donghyeon;Lee, Moungjin;Lee, Seungkuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.233-243
    • /
    • 2021
  • Photovoltaic panels are hazardous electronic waste that has heavy metal as one of the hazardous components. Each year, hazardous electronic waste is increasing worldwide and every heavy rainfall exposes the photovoltaic panel to become the source of heavy metal soil contamination. the development needs a monitoring technology for this hazardous exposure. this research use relationships between SAR temporal baseline and coherence of Sentinel-1 satellite to detected photovoltaic panel. Also, the photovoltaic plant detection tested using the difference between that photovoltaic panel and the other difference surface of coherence. The author tested the photovoltaic panel and its environment to calculate differences in coherence relationships. As a result of the experiment, the coherence of the photovoltaic panel, which is assumed to be a permanent scatterer, shows a bias that is biased toward a median value of 0.53 with a distribution of 0.50 to 0.65. Therefore, further research is needed to improve errors that may occur during processing. Additionally, the author found that the change detection using a temporal baseline is possible as the rate of reduction of coherence of photovoltaic panels differs from those of artificial objects such as buildings. This result could be an efficient way to continuously monitor regardless of weather conditions, which was a limitation of the existing optical satellite image-based photovoltaic panel detection research and to understand the spatial distribution in situations such as photovoltaic panel loss.

A Kinematic Comparative Analysis of Yoko Ukemi(side breakfall) by Each Stage in Judo[ I ] (유도 단계별 측방낙법의 운동학적 변인 비교분석[ I ])

  • Kim, Eui-Hwan;Kim, Sung-Sup
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.203-218
    • /
    • 2004
  • The purpose of this study was to analyze the comparisons of the kinematical variables when performing Yoko Ukemi(side breakfall) by three Stage in Judo. The subjects were four male judokas who were trainees Y. I. University Squad members and the Yoko Ukemi were filmed by two S-VHS 16mm video cameras(60fields/sec.). The selected times were subject to KWON 3D analysis program and kinematical analysis to compare variables of three Yoko Ukemi. Temporal variables(total time-required : TK, TR by each phase), the body part touched order on the mat and COG variables were computed through video analysis while performing right Yoko Ukemi by three stage. From the data analysis and discussion, the following conclusions were drawn : 1. Temporal variables : total time-required(TR) when performing Yoko Ukemi(side breakfall) by each stage, the first stage(full squat posture: FP : 1.11sec.) showed the shortest time, the next was 3rd(Shizenhontai, straight natural posture: NP : 1.41sec.), and 2nd(Jigohontai, straight defensive posture, DP : 1.42sec.), respectively- 2. TR when performing Yoko Ukemi(side breakfall) by each stage, and phase : the first phase(take of phase, average 0.68sec.) showed the longest time, next was the third phase(ukemi phase, 0.39sec.), and the second phase(air phase, 0.23sec.), respectively. 3. When performing yore Ukemi the body part touched order and TR on the mat : hip(0.94sec.) showed the shortest time, the next was elbow hand(0.97sec.), back(0.98sec.), and shoulder(1.04sec.) order. The hip part touched on the mat the first, but slap the mat in order to alleviate the shock try hand palm and forearm before receiving impact (difference 0.03sec,) 4. Vertical COG variables in each event by each stage : e1(ready position, average 78.33cm) moved the highest, the next was e2(jumping position, 70.14cm), e3(transition position, average 64.00cm), e4(landing position, average 35.99cm), and e5(ukemi position, average 18.32cm) order, gradual decrease respectively. And the difference of COG were showed in initial by each stage, because position fo Yoko Ukemi was difference by each stage in preparation position, but in accordance with executing of Ukemi phase that difference of COG was by decreasing, almost equal displacement in e4(landing) and e5(Ukemi)position finally.

Transient Analysis of General Dispersive Media Using Laguerre Functions (라게르 함수를 이용한 일반적인 분산 매질의 시간 영역 해석)

  • Lee, Chang-Hwa;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1005-1011
    • /
    • 2011
  • In this paper, we present a marching-on-in-degree(MOD) finite difference method(FDM) based on the Helmholtz wave equation for analyzing transient electromagnetic responses in a general dispersive media. The two issues related to the finite difference approximation of the time derivatives and the time consuming convolution operations are handled analytically using the properties of the Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the flux densities, the permittivity with a finite sum of orthogonal Laguerre functions. Through this novel approach, not only the time variable can be decoupled analytically from the temporal variations but also the final computational form of the equations is transformed from finite difference time-domain(FDTD) to a finite difference formulation through a Galerkin testing. Representative numerical examples are presented for transient wave propagation in general Debye, Drude, and Lorentz dispersive medium.

Spatial and Temporal Variation of Macroinvertebrates according to Physical Factors in Gongji Stream Area (공지천 수계에서 물리적인 요인에 따른 저서성 대형무척추동물 군집의 시.공간적인 변동)

  • Lee, Jaeyong;Lee, Kwang-Yeol;Han, Sang-Jin;Lee, Seok-Jong;Jung, Yukyong;Cheon, Jaelyoung;Choi, Jaeseok;Kim, Joon Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.1
    • /
    • pp.24-32
    • /
    • 2014
  • Our study is purposed to understand effect on spatio-temporal variability of macroinvertebrate community 11 sampling times at 4 sites between two streams (Shinchon stream and Gongji stream in Chuncheun City) from May 2011 to October 2013. In this study, the possible physical factors on spatio-temporal variability of macroinvertebrate community were discussed. After stream improvement project, the effects of anthropogenic disturbance in study sites appeared as increased water temperature more than $30^{\circ}C$ and the difference of water temperature between Shinchon stream and Gongji stream was by maximum $9^{\circ}C$ on 2012. The monsoon rainfall decreased number of species, individuals and biodiversity index of macroinvertebrate community, particularly, in Shincheon stream compare to Gongji stream. Dominant species of macroinvertebrate taxa was caddisfly in Shincheon stream and Diptera in Gongji stream but on August 2013, it was dominated by Diptera, Chironomidae spp. in all study sites. The spatio-temporal variability of macroinvertebrate community in the streams may be useful as bio-indicator influencing anthropogenic factors such as soil erosion (landslide or cultivation) or monsoon rainfall.

The Characteristics of Spatio-Temporal Distribution on Phytoplankton in the Nakdong River Estuary, during 2013-2015 (낙동강 하구역에서 2013-2015년 식물플랑크톤의 시·공간분포 특성)

  • Yoo, Man-Ho;Youn, Seok-Hyun;Park, Kyung-Woo;Kim, A-Ram;Yoon, Sang-Chol;Suh, Young-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.738-749
    • /
    • 2016
  • To understand the characteristics of the spatio-temporal distribution of phytoplankton after barrage construction in the Nakdong River Estuary, this study investigated relevant environmental parameters and phytoplankton status based on bi-monthly samples collected from the Nakdong River Estuary itself from February 2013 to December 2015. Environmental parameters did not differ significantly across these years but did vary between zones and seasons. The results suggested that the upper zone was dominated by fresh-water diatoms, green algae, and blue-green algae, whereas the lower zone was mostly dominated by dinoflagellates. The presence of Stephanodiscus spp., Asterionellopsis formosa, and Microcystis spp. in the upper zone was related to the inflow of freshwater discharge by artificial control of dyke gates. The dominant phytoplankton species in this zone were dependent on temperature, wind speed, DIP, and DIN, while those in the lower zone were mostly dependent on nutrients and wind speed. In addition, at the lower zone, there were negative correlations between Prorocentrum donghaiense, DIN, and wind speed, with its abundance being higher during the summer than other seasons. Analysis of temporal variations did not indicate any significant differences in the upper zone but did reveal variations among seasons at the lower zone. Except in 2014, the lower zone could be divided into periods dominated by diatoms (October-April) and dinoflagellates (June-August). These results suggest that the characteristics of the phytoplankton community were influenced by changes in the inflow of freshwater species and nutrients given the difference in the range affected by freshwater discharge.