• Title/Summary/Keyword: Temporal Data Mining System Design

Search Result 7, Processing Time 0.02 seconds

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts (도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템)

  • Ahn, Hee-Jeong;Kim, Kee-Won;Kim, Seung-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

Design of Efficient Query Language to support Local information administration environment (지역정보 관리 환경을 지원하기 위한 효율적인 질의 언어의 설계)

  • Kang, Sung-Kwan;Rhee, Phill-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.36-40
    • /
    • 2008
  • SIMS manages data for various spatial and non-spatial as integral management system to support space information administration environment and support several application works. Without being limited to spatial data that existent spatial Data Mining question language advances handling in this paper, did so that can find useful information from various data connected with automatically data collection, artificial satellite side upside service, remote sensing, GPS. Mobile Computing and data about Spatio-Temporal. Also, we designed spatial Data Mining query language that support a spatial Data Mining exclusive use system based on SIMS.

  • PDF

Design and Implementation of a Spatial Data Mining System (공간 데이터 마이닝 시스템의 설계 및 구현)

  • Bae, DUck-Ho;Baek, Ji-Haeng;Oh, Hyun-Kyo;Song, Ju-Won;Kim, Sang-Wook;Choi, Myoung-Hoi;Jo, Hyeon-Ju
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.119-132
    • /
    • 2009
  • Owing to the GIS technology, a vast volume of spatial data has been accumulated, thereby incurring the necessity of spatial data mining techniques. In this paper, we propose a new spatial data mining system named SD-Miner. SD-Miner consists of three parts: a graphical user interface for inputs and outputs, a data mining module that processes spatial mining functionalities, a data storage model that stores and manages spatial as well as non-spatial data by using a DBMS. In particular, the data mining module provides major data mining functionalities such as spatial clustering, spatial classification, spatial characterization, and spatio-temporal association rule mining. SD-Miner has own characteristics: (1) It supports users to perform non-spatial data mining functionalities as well as spatial data mining functionalities intuitively and effectively; (2) It provides users with spatial data mining functions as a form of libraries, thereby making applications conveniently use those functions. (3) It inputs parameters for mining as a form of database tables to increase flexibility. In order to verify the practicality of our SD-Miner developed, we present meaningful results obtained by performing spatial data mining with real-world spatial data.

  • PDF

Mining Loot Box News : Analysis of Keyword Similarities Using Word2Vec (확률형 아이템 뉴스 마이닝 : Word2Vec 활용한 키워드 유사도 분석)

  • Kim, Taekyung;Son, Wonseok;Jeon, Seongmin
    • Journal of Information Technology Services
    • /
    • v.20 no.2
    • /
    • pp.77-90
    • /
    • 2021
  • Online and mobile games represent digital entertainment. Not only the game grows fast, but also it has been noted for unique business models such as a subscription revenue model and free-to-play with partial payment. But, a recent revenue mechanism, called a loot-box system, has been criticized due to overspending, weak protection to teenagers, and more over gambling-like features. Policy makers and research communities have counted on expert opinions, review boards, and temporal survey studies to build countermeasures to minimize negative effects of online and mobile games. In this process, speed was not seriously considered. In this study, we attempt to use a big data source to find a way of observing a trend for policy makers and researchers. Specifically, we tried to apply the Word2Vec data mining algorithm to news repositories. From the findings, we acknowledged that the suggested design would be effective in lightening issues timely and precisely. This study contributes to digital entertainment service communities by providing a practical method to follow up trends; thus, helping practitioners have concrete grounds for balancing public concerns and business purposes.

A Design and Practical Use of Spatial Data Warehouse for Spatiall Decision Making (공간적 의사결정을 위한 공간 데이터 웨어하우스 설계 및 활용)

  • Park Ji-Man;Hwang Chul-sue
    • Spatial Information Research
    • /
    • v.13 no.3 s.34
    • /
    • pp.239-252
    • /
    • 2005
  • The major reason that spatial data warehousing has attracted a great deal of attention in business GIS in recent years is due to the wide availability of huge amount of spatial data and the imminent need for fuming such data into useful geographic information. Therefore, this research has been focused on designing and implementing the pilot tested system for spatial decision making. The purpose of the system is to predict targeted marketing area by discriminating the customers by using both transaction quantity and the number of customer using credit card in department store. Moreover, the pilot tested system of this research provides OLAP tools for interactive analysis of multidimensional data of geographically various granularities, which facilitate effective spatial data mining. focused on the analysis methodology, the case study is aiming to use GIS and clustering for knowledge discovery. Especially, the importance of this study is in the use of snowflake schema model capabilities for GIS framework.

  • PDF

Design of Query Processing System to Retrieve Information from Social Network using NLP

  • Virmani, Charu;Juneja, Dimple;Pillai, Anuradha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1168-1188
    • /
    • 2018
  • Social Network Aggregators are used to maintain and manage manifold accounts over multiple online social networks. Displaying the Activity feed for each social network on a common dashboard has been the status quo of social aggregators for long, however retrieving the desired data from various social networks is a major concern. A user inputs the query desiring the specific outcome from the social networks. Since the intention of the query is solely known by user, therefore the output of the query may not be as per user's expectation unless the system considers 'user-centric' factors. Moreover, the quality of solution depends on these user-centric factors, the user inclination and the nature of the network as well. Thus, there is a need for a system that understands the user's intent serving structured objects. Further, choosing the best execution and optimal ranking functions is also a high priority concern. The current work finds motivation from the above requirements and thus proposes the design of a query processing system to retrieve information from social network that extracts user's intent from various social networks. For further improvements in the research the machine learning techniques are incorporated such as Latent Dirichlet Algorithm (LDA) and Ranking Algorithm to improve the query results and fetch the information using data mining techniques.The proposed framework uniquely contributes a user-centric query retrieval model based on natural language and it is worth mentioning that the proposed framework is efficient when compared on temporal metrics. The proposed Query Processing System to Retrieve Information from Social Network (QPSSN) will increase the discoverability of the user, helps the businesses to collaboratively execute promotions, determine new networks and people. It is an innovative approach to investigate the new aspects of social network. The proposed model offers a significant breakthrough scoring up to precision and recall respectively.