• Title/Summary/Keyword: Template-free

Search Result 92, Processing Time 0.015 seconds

Antibacterial and Antiviral Activities of Multi-coating Polyester Textiles (다중 코팅 폴리에스터 섬유 여재의 항균 및 항바이러스 특성)

  • Ko, Sangwon;Lee, Jae-Young;Park, Duckshin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.444-450
    • /
    • 2022
  • The effect of coated polyester (PET) textiles with metal oxide, chitosan, and copper ion on the antibacterial and antiviral activities was evaluated to investigate the applicability of multi-coated PET textiles as antiviral materials. Compared to coated PETs with a single agent, multi-coated PETs reduced the loading amount of coating materials as well as the contact time with bacteria for a bacterial cell number of < 10 CFU/mL, which was not detectable with the naked eyes. Metal oxides generate reactive oxygen species (ROS) such as free radicals by a catalytic reaction, and copper ions can promote contact killing by the generation of ROS. Chitosan not only enhanced antibacterial activities due to amine groups, but enabled it to be a template to load copper ions. We observed that multi-coated PET textiles have both antibacterial activities for E. coli and S. aureus and antiviral efficiency of more than 99.9% for influenza A (H1N1) and SARS-CoV-2. The multi-coated PET textiles could also be prepared via a roll-to-roll coating process, which showed high antiviral efficacy, demonstrating its potential use in air filtration and antiviral products such as masks and personal protective equipment.

Modified tunneling technique for root coverage of anterior mandible using minimal soft tissue harvesting and volume-stable collagen matrix: a retrospective study

  • Lee, Yoonsub;Lee, Dajung;Kim, Sungtae;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.6
    • /
    • pp.398-408
    • /
    • 2021
  • Purpose: In this study, we aimed to evaluate the clinical validity of the modified tunneling technique using minimal soft tissue harvesting and volume-stable collagen matrix in the anterior mandible. Methods: In total, 27 anterior mandibular teeth and palatal donor sites in 17 patients with ≥1 mm of gingival recession (GR) were analyzed before and after root coverage. For the recipient sites, vertical vestibular incisions were made in the interdental area and a subperiosteal tunnel was created with an elevator. After both sides of the marginal gingiva were tied to one another, a prepared connective tissue graft and volume-stable collagen matrix were inserted through the vestibular vertical incision and were fixed with resorbable suture material. The root coverage results of the recipient site were measured at baseline (T0), 3 weeks (T3), 12 weeks (T12), and the latest visit (Tl). For palatal donor sites, a free gingival graft from a pre-decided area avoiding the main trunk of the greater palatine artery was harvested using a prefabricated surgical template at a depth of 2 mm after de-epithelization using a rotating bur. In each patient, the clinical and volumetric changes at the donor sites between T0 and T3 were measured. Results: During an average follow-up of 14.5 months, teeth with denuded root lengths of 1-3 mm (n=12), 3-6 mm (n=11), and >6 mm (n=2) achieved root coverage of 97.01%±7.65%, 86.70%±5.66%, and 82.53%±1.39%, respectively. Miller classification I (n=12), II (n=10), and III (n=3) teeth showed mean coverage rates of 97.01%±7.65%, 86.91%±5.90%, and 83.19%±1.62%, respectively. At the donor sites, an average defect depth of 1.41 mm (70.5%) recovered in 3 weeks, and the wounds were epithelized completely in all cases. Conclusions: The modified tunneling technique in this study is a promising treatment modality for overcoming GR in the anterior mandible.