• Title/Summary/Keyword: Temperature-nonthermal model

Search Result 5, Processing Time 0.026 seconds

A Study of the Life Characteristic of Hydraulic Hose Assembly by Adopting Temperature-Nonthermal Acceleration Model (온도.비열 가속모형을 적용한 유압호스조립체 수명특성 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Cho, You-Hee;Sim, Sung-Bo;Kim, Jae-Hoon
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.235-244
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipment such as construction machinery, automobile, aircraft, industrial machinery, machine tools and machinery for ships. Also, they are widely used as pipes in oil pressure circuit. When we estimate their lifetime, it is essential to conduct an accelerated life test by choosing the factor that suits the usage condition of the test object since traditional test method for estimating lifetime under the influence of various external factors incurs hardship in terms of time and expenses. The objective of this study is to propose an acceleration model that takes both temperature and pressure without flexing condition into consideration. The lifetime is estimated by applying the proposed temperature-nonthermal acceleration model to the test data. And we compare the proposed temperature-nonthermal acceleration model and the accelerated life equation suggested by John(1994).

Nonthermal Plasma-Driven Catalysis of Benzene and Toluene (저온플라즈마 구동 촉매 반응기를 이용한 벤젠과 톨루엔의 처리)

  • Kim, Hyun-Ha;Ogata, Atsushi;Futamura, Shigeru
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • Nonthermal plasma-driven catalysis (PDC) was investigated for the decomposition of benzene and toluene as model compounds of volatile organic compounds (VOCs) at atmospheric pressure and low temperature. Two types of catalysts Ag/$TiO_{2}$ and Pt/$\gamma-Al_{2}O_{3}$ were tested in this study. The amount of catalysts packed in the PDC reactor did not influence on the decomposition efficiency of benzene. The type of catalysts also had no influence on the decomposition efficiency of toluene and carbon balance. The Ag/$TiO_{2}$ catalyst showed constant $CO_{2}$ selectivity of about $73\%$ regardless of the specific input energy. However, the selectivity of $CO_{2}$ was greatly enhanced with the Pt/$\gamma-Al_{2}O_{3}$ catalysts, and reached $97\%$ at 205 J/L. Two test runs with 20 fold difference in the gas flow clearly indicated that lab-scale data can be successfully applied for the scaling-up of PDC system.

Measurement of Plasma Parameters (Te and Ne) and Reactive Oxygen Species in Nonthermal Bioplasma Operating at Atmospheric Pressure

  • Choi, Eun Ha;Kim, Yong Hee;Kwon, Gi Chung;Choi, Jin Joo;Cho, Guang Sup;Uhm, Han Sup;Kim, Doyoung;Han, Yong Gyu;Suanpoot, Pradoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.141-141
    • /
    • 2013
  • We have generated the needle-typed nonthermal plasma jet by using an Ar gas flow at atmospheric pressure. Diagnostics of electron temperature anddensity is critical factors in optimization of the atmospheric plasma jet source in accordance with the gas flow rate. We have investigated the electron temperature and density of plasma jet by selecting the four metastable Ar emission lines based on the atmospheric collisional radiative model and radial profile characteristics of current density, respectively. The averaged electron temperature and electron density for this plasma jet are found to be ~1.6 eV and ~$3.2{\times}10^{12}cm^{-3}$, respectively, in this experiment. The densities of OH radical species inside the various bio-solutions are found to be higher by about 4~9 times than those on the surface when the argon bioplasma jet has been bombarded onto the bio-solution surface. The densities of the OH radicalspecies inside the DI water, DMEM, and PBS are measured to be about $4.3{\times}10^{16}cm^{-3}$, $2.2{\times}10^{16}cm^{-3}$, and $2.1{\times}10^{16}cm^{-3}$, respectively, at 2 mm downstream from the surface under optimized Ar gas flow 250 sccm.

  • PDF

The Study of the Effects of Nonthermal Plasma-Photocatalyst combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine (스파크 점화기관 냉간 시동시 플라즈마 광촉매 복합장치에 의한 탄화수소 화합물 저감에 관한 실험적 연구)

  • Lee, Taek-Heon;Chun, Kwang-Min;Chun, Bae-Hyeock;Shin, Young-Gy
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.169-178
    • /
    • 2001
  • Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition. However the absolute value was locally a bit higher than those of base condition since the products was made from the dissociation and decomposition of highly branched paraffins by plasma-photocatalyst reactor. Olefinic components were highly decomposed by about 75%, due to these excellent decompositions of olefins which have relatively high MIR values, and the SR value was 1.87 that is 30% reduction from that of base condition, then, the photochemical reactivity was lowered.

  • PDF

MULTILAYER SPECTRAL INVERSION OF SOLAR Hα AND CA II 8542 LINE SPECTRA WITH HEIGHT-VARYING ABSORPTION PROFILES

  • Chae, Jongchul;Cho, Kyuhyoun;Kang, Juhyung;Lee, Kyoung-Sun;Kwak, Hannah;Lim, Eun-Kyung
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.5
    • /
    • pp.139-155
    • /
    • 2021
  • We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption profile was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption profile is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model fitting. We apply this updated MLSI to two sets of Hα and Ca II line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We find that the new version of the MLSI satisfactorily fits most of the observed line profiles of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral fibril, an umbral feature, and a fast downflow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca II 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.