• Title/Summary/Keyword: Temperature-dependent development model

Search Result 96, Processing Time 0.02 seconds

Temperature-dependent Development of Pseudococcus comstocki(Homoptera: Pseudococcidae) and Its Stage Transition Models (가루깍지벌레(Pseudococcus comstocki Kuwana)의 온도별 발육기간 및 발육단계 전이 모형)

  • 전흥용;김동순;조명래;장영덕;임명순
    • Korean journal of applied entomology
    • /
    • v.42 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • This study was carried out to develop the forecasting model of Pseudococcus comtocki Kuwana for timing spray. Field phonology and temperature-dependent development of p. comstocki were studied, and its stage transition models were developed. p comstocki occurred three generations a year in Suwon. The 1 st adults occurred during mid to late June, and the 2nd adults were abundant during mid to late August. The 3rd adults were observed after late October. The development times of each instar of p. comstocki decreased with increasing temperature up to 25$^{\circ}C$, and thereafter the development times increased. The estimated low-threshold temperatures were 14.5, 8.4, 10.2, 11.8, and 10.1$^{\circ}C$ for eggs, 1st+2nd nymphs, 3rd nymphs, preoviposition, and 1st nymphs to preoviposition, respectively. The degree-days (thermal constants) for completion of each instar development were 105 DD for egg,315 DD for 1st+2nd nymph, 143 DD for 3rd nymph, 143 DD for preoviposition, and 599 DD for 1 st nymph to preoviposition. The stage transition models of p. comstocki, which simulate the proportion of individuals shifted from a stage to the next stage, were constructed using the modified Sharpe and DeMichele model and the Weibull function. In field validation, degree-day models using mean-minus-base, sine wave, and rectangle method showed 2-3d, 1-7d, and 0-6 d deviation with actual data in predicting the peak oviposition time of the 1st and 2nd generation adults, respectively. The rate summation model, in which daily development rates estimated by biophysical model of Sharpe and DeMichele were accumulated, showed 1-2 d deviation with actual data at the same phonology predictions.

Temperature-dependent Development Model of White Backed Planthopper (WBPH), Sogatella furcifera (Horvath) (Homoptera: Delphacidae) (흰등멸구 [Sogatella furcifera (Horvath)] 온도 발육 모델)

  • Park, Chang-Gyu;Kim, Kwang-Ho;Park, Hong-Hyun;Lee, Sang-Guei
    • Korean journal of applied entomology
    • /
    • v.52 no.2
    • /
    • pp.133-140
    • /
    • 2013
  • The developmental times of the immature stages of Sogatella furcifera (Horvath) were investigated at ten constant temperatures (12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, $35{\pm}1^{\circ}C$), 20~30% RH, and a photoperiod of 14:10 (L:D) h. Eggs were successfully developed on each tested temperature regimes except $12.5^{\circ}C$ and its developmental time was longest at $15^{\circ}C$ (22.5 days) and shortest at $32.5^{\circ}C$ (5.5 days). Nymphs successfully developed to the adult stage from $15^{\circ}C$ to $32.5^{\circ}C$ temperature regimes. Developmental time was longest at $15^{\circ}C$ (51.9 days) and it was decreased with increasing temperature up to $32.5^{\circ}C$ (9.0 days). The relationships between developmental rate and temperature were fitted by a linear model and seven nonlinear models (Analytis, Briere 1, 2, Lactin 2, Logan 6, Performance and modified Sharpe & DeMichele). The lower threshold temperature of egg and total nymphal stage was $10.2^{\circ}C$ and $12.3^{\circ}C$ respectively. The thermal constant required to complete egg and nymphal stage were 122.0 and 156.3 DD, respectively. The Briere 1 model was best fitted ($r^2$= 0.88~0.99) for all developmental stages, among seven nonlinear models. The distribution of completion of each development stage was well described by three non-linear models (2-parameter, 3-parameter Weibull and Logistic) ($r^2$= 0.91~0.96) except second and fifth instar.

Reliability Evaluation Through Moisture Sorption Characterization of Electronic Packaging Materials (전자 패키징 소재의 수착 특성화를 통한 신뢰성 평가)

  • Park, Heejin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1151-1158
    • /
    • 2013
  • Knowledge of the moisture sorption properties of a material is essential for optimal material development and analysis of the delamination failure caused by vapor pressure at the interlayer during the manufacturing process of integrated packaging devices. In this paper, both temperature dependent absorption and desorption properties according to temperature and humidity model are parameterized and the effects of water activities and temperature are discussed. The activation energy obtained from the parameterized diffusivity determines the acceleration factor for the equivalency of moisture sorption levels, which enables the effect of moisture diffusivity on the equivalent elapsed testing time required for evaluating the reliable life time to be estimated. The acceleration factor evaluated at the reliability testing standard of the flexible packaging module is exampled.

Numerical Experiments of Ocean Acoustic Tomography in the East Sea of Korea

  • Han, Sang-Kyu;Na, Jung-Yul;Lee, Jae-Hak
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.64-74
    • /
    • 1996
  • Numerical experiments of OAT (Ocean Acoustic Tomography) are carried out in the East Sea of Korea where the canonical ocean has been perturbed by a mesoscale warm eddy and a thermal front. In order to estimate the horizontal and vertical structure of water temperature of the perturbed ocean, the experimental area is divided into 16 cells with 8 pairs of sources and receivers for a horizontal slice and the water column is divided into 8 layers for a vertical slice. The inversely estimated temperature field by using SVD (Singular Value Decomposition) method reveals the eddy and frontal structure clearly. The rms errors of the two horizontal slices are less than $0.4^{\circ}C$ and $1.7^{\circ}C$ at 400 m and 200 m depths, respectively, while the error in the vertical slice is less than $1.0^{\circ}C.$ For better estimation of temperature by OAT method, particularly for the East Sea, a range-dependent ray model should be used to solve the forward problem. At the same time, improvement in computing the refracted ray path between vertical layers is required to obtain more accurate travel time information. The results of the present experiment give rise to a possibility of application of OAT in remote sensing of the ocean thermal structure.

  • PDF

Temperature-dependent Development and Fecundity of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on Corns (옥수수에서 기장테두리진딧물의 온도 의존적 발육과 산자 특성)

  • Park, Jeong Hoon;Kwon, Soon Hwa;Kim, Tae Ok;Oh, Sung Oh;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.149-160
    • /
    • 2016
  • Temperature-dependent development and fecundity of apterious Rhopalosiphum padi (L.) (Hemiptera: Aphididae) were examined at six constant temperatures (10, 15, 20, 25, 30 and $35{\pm}1.0^{\circ}C$, RH 50-70%, 16L:8D). Development time of nymphs decreased with increasing temperature and ranged from 42.9 days at $10^{\circ}C$ to 4.7 days at $30^{\circ}C$. The nymphs did not develop until adult at $35^{\circ}C$ because the nymphs died during the 2nd instar. The lower threshold temperature and thermal constant of nymph were estimated as $8.3^{\circ}C$ and 101.6 degree days, respectively. The relationships between development rates of nymph and temperatures were well described by the nonlinear model of Lactin 2. The distribution of development times of each stage was successfully fitted to the Weibull function. The longevity of apterious adults decreased with increasing temperature ranging from 24.0 days at $15^{\circ}C$ to 4.3 days at $30^{\circ}C$, with abnormally short longevity of 11.1 days at $10^{\circ}C$. R. padi showed the highest fecundity at $20^{\circ}C$ (38.2) and the lowest fecundity at $10^{\circ}C$ (3.9). In this study, we provided component sub-models for the oviposition model of R. padi: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate as well as adult aging rate based on the adult physiological age.

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK MODELS SUPPORTING RESERVOIR OPERATION FOR THE CONTROL OF DOWNSTREAM WATER QUALITY

  • Chung, Se-Woong;Kim, Ju-Hwan
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.143-153
    • /
    • 2002
  • As the natural flows in rivers dramatically decrease during drought season in Korea, a deterioration of river water quality is accelerated. Thus, consideration of downstream water quality responding to changes in reservoir release is essential for an integrated watershed management with regards to water quantity and quality. In this study, water quality models based on artificial neural networks (ANNs) method were developed using historical downstream water quality (rm $\NH_3$-N) data obtained from a water treatment plant in Geum river and reservoir release data from Daechung dam. A nonlinear multiple regression model was developed and compared with the ANN models. In the models, the rm NH$_3$-N concentration for next time step is dependent on dam outflow, river water quality data such as pH, alkalinity, temperature, and rm $\NH_3$-N of previous time step. The model parameters were estimated using monthly data from Jan. 1993 to Dec. 1998, then another set of monthly data between Jan. 1999 and Dec. 2000 were used for verification. The predictive performance of the models was evaluated by comparing the statistical characteristics of predicted data with those of observed data. According to the results, the ANN models showed a better performance than the regression model in the applied cases.

  • PDF

Development of three-dimensional global MHD model for an interplanetary coronal mass ejection

  • An, Jun-Mo;Magara, Tetsuya;Inoue, Satoshi;Hayashi, Keiji;Tanaka, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2015
  • We developed a three-dimensional magnetohydrodynamic (MHD) code to reproduce the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain. On the basis of a comparison between a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  • PDF

Development of an Expert Technique and Program to Predict the Pollution of Outdoor Insulators (옥외 절연물의 오손도 예측 기법 및 프로그램 개발)

  • Kim, Jae-Hoon;Kim, Ju-Han;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • Recently, with the rapid growth of industry, environmental condition became worse. In addition to outdoor insulators in seashore are polluted due to salty wind. Also this pollution causes the flashover and failure of electric equipments. Especially the salt contaminant is one of the most representative pollutants, and known as the main source of the accident by contamination. As well known, the pollution has a close relation with meteorological factors such as wind velocity, wind direction, temperature, relative humidity, precipitation and so on. In this paper we have statistically analyzed the correlation between the pollution and the meteorological factors. The multiple regression analysis was used for the statistical analysis; daily measured equivalent salt deposit density(dependent variable) and the weather condition data(independent variable) were used. Also we have developed an expert program to predict the pollution deposit. A new prediction system using this program called SPPP(salt pollution prediction program) has been used to model accurately the relationship between ESDD with the meteorological factors.

Derivation of a Simplified Heat Transfer Correlation for AP 600 Passive Containment Cooling System

  • Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.122-130
    • /
    • 1998
  • A simplified heat transfer model for the cooling capability of the AP 600 PCCS is proposed I this paper. As the PCCS domain is covered with very thin and long water film, it is phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. As the length of the asymptotic region is estimated to be over 90% of the whole domain, the phenomena in the asymptotic region is focused. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCs phenomena in the asymptotic region and the buoyant air flow phenomena on a vertical heated plate is derived. Using the similarity, the simplified heat transfer correlations for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer were established. To verify the accuracy of the correlation, the results of this study were compared with those of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  • PDF

Prediction of Microstructural Evolution in Hot Forging of Steel by the Finite Element Method (유한요소법에 의한 열간성형공정에서 강의 미세조직변화 예측)

  • 장용순;고대철;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.129-138
    • /
    • 1998
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The development of microstructure is strongly dependent on process variables and metallurgical factors that affect time history of thermodynamical variables such as temperature, strain. and strain rate during deformation. Then finite element method is applied for the prediction of microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermodynamical properties during forming process. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method are employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectiveness of the proposed method, experiments are accomplished and the results of experiments are compared with those of simulations.

  • PDF