• Title/Summary/Keyword: Temperature variation H NMR

Search Result 12, Processing Time 0.016 seconds

Synthesis and Characterization of Biodegradable MethoxyPoly(ethylene glycol)-Poly$(\varepsilon-caprolactone-co-L-lactide)$ Block Copolymers (메톡시폴리(에틸렌 글리콜)-폴리(카프로락톤-co-L-락타이드) 공중합체의 합성 및 특성 분석)

  • Hyun Hoon;Cho Young Ho;Jeong Sung Chan;Lee Bong;Kim Moon Suk;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.28-34
    • /
    • 2006
  • A series of methoxypoly(ethylene glycol) $(MPEG)-poly(\varepsilon-co-L-lactide)$ (PCLA) diblock copolymers were synthesized by ring-opening polymerization of a mixture of $\varepsilon-caprolactone$ and L-lactide with different ratios in the presence of $Sn(Oct)_2$. The characterization of MPEG-PCLA diblock copolymers were examined by $^1H-NMR$, GPC, DSC, and XRD. Kinetic study on ring-opening polymerization of monomer mixtures was carried out in various conditions such as a variation with polymerization time, amount of catalyst, and temperature. The highest conversion obtained in 1.2 ratic of initiator venn catalyst at $110\;^{\circ}C$. The biodegradable characterization of MPEG-PCLA diblock copolymers in aqueous solution was carried out by using GPC for $1\~14$ weeks. The biodegradability of MPEG-PCLA diblock copolymers increased as the L-lactide content of diblock copolymers increased. In conclusion, we confirmed the dependence of polymerization rate according to various conditions. In addition, we can control the biodegradability of MPEC-PCLA diblock copolymers by changing the ratio of PCL and PLA block segment.

Liquid Crystalline Properties of Dimers Having o-, m- and p- Positional Molecular Structures

  • Park, Joo-Hoon;Choi, Ok-Byung;Lee, Hwan-Myung;Lee, Jin-Young;Kim, Sung-Jo;Cha, Eun-Hee;Kim, Dong-Hyun;Ramaraj, B.;So, Bong-Keun;Kim, Kyung-Hwan;Lee, Soo-Min;Yoon, Kuk-Ro
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1647-1652
    • /
    • 2012
  • With the objective to design and synthesis of Schiff's base symmetrical liquid crystal dimmers and to study the effect of molecular structure variation ($o-ortho$, $m-meta$, $p-para$) and change in alkoxy terminal chain length on mesomorphic properties of liquid crystals, We have synthesized Schiff base dimers from dialdehyde derivative containing 2-hydroxy-1,3-dioxypropylene as short spacer with aniline derivatives having different lengths of terminal alkoxy chains ($n$ = 5, 7, 9). The chemical structure of the final products was characterized by proton nuclear magnetic resonance ($^1H$ NMR) spectroscopy and fourier transform infrared (FT-IR) spectroscopy. The mesomorphic properties and optical textures of the resultant dimers were characterized by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The existence of smectic A phase transition was confirmed by the observation of batonnets and fan shaped textures in optical microscopy when compound were heated from crystalline phase. All of the dimers of this series, with the exception of $\mathbf{2S_5}$ -ortho, -meta, -para, were thermotropic liquid crystal. The compound $\mathbf{2S_9}$ -meta was monotropic, while the rest were enantiotropic. It was found that the change in terminal alkoxy chain length has pronounced effect on the mesomorphic properties. The temperature range of smectic A phase window widens with increasing alkoxy chain length.