• Title/Summary/Keyword: Temperature variation

Search Result 5,651, Processing Time 0.037 seconds

Elimination of environmental temperature effect from the variation of stay cable force based on simple temperature measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Liu, Chun-Yan;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.137-149
    • /
    • 2017
  • Under the interference of the temperature effect, the alternation of cable force due to damages of a cable-stayed bridge could be difficult to distinguish. Considering the convenience and applicability in engineering practice, simple air or cable temperature measurements are adopted in the current study for the exclusion of temperature effect from the variation of cable force. Using the data collected from Ai-Lan Bridge located in central Taiwan, this work applies the ensemble empirical mode decomposition to process the time histories of cable force, air temperature, and cable temperature. It is evidently observed that the cable force and both types of temperature can all be categorized as the daily variation, long-term variation, and high-frequency noise in the order of decreasing weight. Moreover, the correlation analysis conducted for the decomposed variations of all these three quantities undoubtedly indicates that the daily and long-term variations with different time shifts have to be distinguished for accurately evaluating the temperature effect on the variation of cable force. Finally, consistent results in reducing the range of cable force variation after the elimination of temperature effect confirm the validity and stability of the developed method.

Influence upon Machining Accuracy of Micro-Pattern Roll Mold Processed by Temperature Variation (미세 패턴 롤 금형 가공시스템의 온도변화가 가공정밀도에 미치는 영향 연구)

  • Je, T.J.;Park, S.C.;Lee, K.W.;Noh, J.S.;Choi, D.S.;Whang, K.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.107-111
    • /
    • 2009
  • Temperature variation happens in micro prism roll mold processing system during machining the prism pattern roll mold using manufacturing optical films of LCD (liquid crystal display). This temperature variation induces pitch errors of the prism patterns. The temperature variation displaces the positions of the diamond cutting tool on the roll which was coated by the copper. In order to prevent the pitch errors, the stabilizing the temperature of machining environment is needed. Therefore, the researching on the temperature variation of the ultra-precision roll mold processing system on the machining of micro prism rot 1 mold is needed. In this paper, the temperature variation of micro prism roll mold processing system is researched, the influence is analyzed, and the study for reducing the pitch errors carried out.

Exploration of temperature effect on videogrammetric technique for displacement monitoring

  • Zhou, Hua-Fei;Lu, Lin-Jun;Li, Zhao-Yi;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.135-153
    • /
    • 2020
  • There has been a sustained interest towards the non-contact structural displacement measurement by means of videogrammetric technique. On the way forward, one of the major concerns is the spurious image drift induced by temperature variation. This study therefore carries out an investigation into the temperature effect of videogrammetric technique, focusing on the exploration of the mechanism behind the temperature effect and the elimination of the temperature-caused measurement error. 2D videogrammetric measurement tests under monotonic or cyclic temperature variation are first performed. Features of measurement error and the casual relationship between temperature variation and measurement error are then studied. The variation of the temperature of digital camera is identified as the main cause of measurement error. An excellent linear relationship between them is revealed. After that, camera parameters are extracted from the mapping between world coordinates and pixels coordinates of the calibration targets. The coordinates of principle point and focal lengths show variations well correlated with temperature variation. The measurement error is thought to be an outcome mainly attributed to the variation of the coordinates of principle point. An approach for eliminating temperature-caused measurement error is finally proposed. Correlation models between camera parameters and temperature are formulated. Thereby, camera parameters under different temperature conditions can be predicted and the camera projective matrix can be updated accordingly. By reconstructing the world coordinates with the updated camera projective matrix, the temperature-caused measurement error is eliminated. A satisfactory performance has been achieved by the proposed approach in eliminating the temperature-caused measurement error.

EHL Analysis of connecting Rod Bearings Considering Effects of Temperature Variation (온도 변화의 영향을 고려한 커넥팅 로드 베어링의 EHL 해석)

  • 김병직;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.114-120
    • /
    • 2000
  • EHL analysis of connecting rod bearing is proposed which includes effects of temperature variation in lubrication film. Lubrication film temperature is treated as a time-dependent, two-dimensional variable which is averaged over the film thickness, while connecting rod big end temperature is assumed to be time-independent and three-dimensional. It is assumed that a portion of the heat generated by viscous dissipation in the lubrication Him is absorbed by the film itself, and the remainder flows into the bearing surface. Mass-conserving cavitation algorithm is applied and the effect of variable viscosity is included to solve the Reynolds equation. Simulation results of the connecting rod bearing of internal combustion engine are presented. It is shown that the temperature variation has remarkable effects on the bearing performance. It is concluded that the EHL analysis considering effects of the temperature variation is strongly recommended to predict the bearing performance of connecting rod big end On internal combustion engine.

  • PDF

Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1159-1175
    • /
    • 2015
  • In this study, the effect of temperature variation on the wireless impedance monitoring is analyzed for the tendon-anchorage connection of the prestressed concrete girder. Firstly, three impedance features, which are peak frequency, root mean square deviation (RMSD) index, and correlation coefficient (CC) index, are selected to estimate the effects of temperature variation and prestress-loss on impedance signatures. Secondly, wireless impedance tests are performed on the tendon-anchorage connection for which a series of temperature variation and prestress-loss events are simulated. Thirdly, the effect of temperature variation on impedance signatures measured from the tendon-anchorage connection is estimated by the three impedance features. Finally, the effect of prestress-loss on impedance signatures is also estimated by the three impedance features. The relative effects of temperature variation and prestress-loss are comparatively examined.

EHL Analysis of Connecting Rod Bearings Considering Effects of Temperature Variation (온도 변화의 영향을 고려한 커넥팅 로드 베어링의 EHL 해석)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.228-235
    • /
    • 2001
  • EHL analysis of connecting rod bearing is proposed which includes effects of temperature variation in lubrication film. Lubrication film temperature is treated as a time-dependent, two-dimensional variable which is averaged over the film thickness, while connecting rod big end temperature is assumed to be time-independent and three-dimensional. It is assumed that a portion of the heat generated by viscous dissipation in the lubrication film is absorbed by the film itself, and the remainder flows into the bearing surface. Mass-conserving cavitation algorithm is applied and the effect of variable viscosity is included to solve the Reynolds equation. Simulation results of the connecting rod bearing in internal combustion engine are presented. It is shown that the temperature variation has remarkable effects on the bearing performance. It is concluded that the EHL analysis considering effects of the temperature variation is strongly recommended to predict the connecting rod bearing performance in internal combustion engine.

Variation Characteristics of Hourly Atmospheric Temperature Throughout a Winter (동계 시각별 외기온의 변동 특성에 관한 연구)

  • Lee, Seung-Eon;Shon, Jang-Yeul
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 1992
  • Identifying characteristics of heating and cooling systems requires estimation of thermal load of specific time interval, especially in cases that its system is operated intermittently, by using thermal storage, of in a partial load condition. Estimating the thermal load, however, needs to forecast hourly weather data variation. Hence, this paper attempts to examine characteristics of hourly ourdoor temperature variation as a preliminary research for the mathematical modeling of the hourly weather variation. Speculating characteristics of daily minimum and maximum temperature occurances, hourly outdoor temperature variation, and daily temperature differences in the increasing range ($07h{\sim}15h$) and decreasing range($15h{\sim}07h$), we were able to analyze changing patterns of daily temperature differences in each range in terms of daily solar amount, cloud ratio, and other weather data. Results from the multiple regression analysis enables us to conclude that daily differences in the increasing range are strongly affected last night temperature itself while the other range's differences are influenced by many weather data, which are solar amount, the variation of cloud, and the maximum temperature of the previous day.

  • PDF

Damage detection of a cable-stayed bridge based on the variation of stay cable forces eliminating environmental temperature effects

  • Chen, Chien-Chou;Wu, Wen-Hwa;Liu, Chun-Yan;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.859-880
    • /
    • 2016
  • This study aims to establish an effective methodology for the detection of instant damages occurred in cable-stayed bridges with the measurements of cable vibration and structural temperatures. A transfer coefficient for the daily temperature variation and another for the long-term temperature variation are firstly determined to eliminate the environmental temperature effects from the cable force variation. Several thresholds corresponding to different levels of exceedance probability are then obtained to decide four upper criteria and four lower criteria for damage detection. With these criteria, the monitoring data for three stay cables of Ai-Lan Bridge are analyzed and compared to verify the proposed damage detection methodology. The simulated results to consider various damage scenarios unambiguously indicate that the damages with cable force changes larger than ${\pm}1%$ can be confidently detected. As for the required time to detect damage, it is found that the cases with ${\pm}2%$ of cable force change can be discovered in no more than 6 hours and those with ${\pm}1.5%$ of cable force change can be identified in at most 9 hours. This methodology is also investigated for more lightly monitored cases where only the air temperature measurement is available. Under such circumstances, the damages with cable force changes larger than ${\pm}1.5%$ can be detected within 12 hours. Even though not exhaustively reflecting the environmental temperature effects on the cable force variation, both the effective temperature and the air temperature can be considered as valid indices to eliminate these effects at high and low monitoring costs.

A Report on the Mass Mortality of the Farmed Japanese Scallop, Patinopecten yessoensis on the Korean Coasts of the East Sea

  • Jo, Q-Tae;Kim, Su-Kyoung;Lee, Chu;Rahman, Mohammad M.;Lee, Chae-Sung;Oh, Bong-Se
    • The Korean Journal of Malacology
    • /
    • v.25 no.2
    • /
    • pp.93-96
    • /
    • 2009
  • Unexpected mass mortality has been one of the drawbacks in front of the stable production of Japanese scallop (Patinopecten yessoensis) on the Gangwon coasts of the East Sea. The preliminary data from our routine observation revealed that the mortality appeared to be related to variation of water temperature in the farming site and the degree of the mortality was dependent on scallop strain. The present study performed to verify the preliminary findings exhibited that the mortality was closely related to daily temperature variation rather than monthly variation. Daily temperature variation was particularly damageable to the scallop during the temperature elevation period. Scallops from hatchery seeds (Chinese strain) were more tolerant against the temperature variation over those from wild seeds. The hatchery scallop gain of the temperature tolerance was probably due to their larval experience to higher temperature in the hatchery as well as their maternal genetic acclimation to upper temperature extreme of the Chinese environment which was recently found.

  • PDF

A Study of Thermal Performance Evaluation Index for Building (건물의 열성능 평가 지표에 관한 연구)

  • Kim, Mi-Hyun;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.67-75
    • /
    • 2007
  • This study intends to the adequacy inspection of the room temperature variation rate that is available in the building heat performance evaluation index, so we performed the sensitivity analysis about the room temperature variation rate and the energy consumption in the room. For these purpose, we supposed the models which are composed of the various window area, insulation thickness and ventilation rate. Then we analyzed the simulation using the ESP-r and Seoul weather data. In this research, the pattern of the increasing & decreasing rate of annual load according to the change of the various design factors is similar to the pattern of increasing & decreasing rate of not the K-values but the room temperature variation rate. Also we derive the optimum value of the various design factors and the room temperature variation rate in this analysis model. Further study is to be required the development of convenient tool to use in the real design.