• 제목/요약/키워드: Temperature test

Search Result 10,099, Processing Time 0.039 seconds

A Study on Hydration Heat Properties and Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 수화열특성 및 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash was used at the same time. It was used that the adiabatic temperature rise of concrete about the mass member which had been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive strength's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the time to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

Optimal M-level Constant Stress Design with K-stress Variables for Weibull Distribution

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.935-943
    • /
    • 2004
  • Most of the accelerated life tests deal with tests that use only one accelerating variable and no other explanatory variables. Frequently, however, there is a test to use more than one accelerating or other experimental variables, such as, for examples, a test of capacitors at higher than usual conditions of temperature and voltage, a test of circuit boards at higher than usual conditions of temperature, humidity and voltage. A accelerated life test is extended to M-level stress accelerated life test with k-stress variables. The optimal design for Weibull distribution is studied with k-stress variables.

  • PDF

Comparison of Short-Term Toxicity Tests Based on Feeding Behavior and Temperature Control by Ceriodaphnia dubia (Ceriodaphnia dubia의 먹이섭생 기작과 온도조절에 근거한 급성독성조사법의 비교)

  • Park, Jong-Ho;Lee, Sang-Ill;Cho, Young-Oak
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • Two methods, a Ceriodaphnia algal uptake suppression test (CAUST) and a new toxicity test based on temperature control (TTBTC) which are based on feeding behaviour and temperature control, respectively, were developed and compared for the adoption as the better methodology for short-term toxicity screening. As previously published by Lee et aI., (1997), the CAUST method is based on the feeding behaviour of C. dubia and requires as little as 1 hour of contact time between C. dubia neonates and toxicant. However, even though CAUST requires only 1 hour of contact time, this method still take many hours for the preparation and measurement. Before the test starts, neonate digestive tracts were cleared by feeding yeast to the daphnids, Neonates were then exposed to toxicant, followed by addition of Scenedesmus subspiatus into the bioassay vessels. Daphnids were examined under the bright-field microscope with the presence of algae (indicated by a green colored digestive tract) or the absence of algae. Uptake indicated no toxic effect, whereas, absence of uptake indicated toxic inhibition. Unlike CAUST, the newly developed method (TTBTC) is based on just temperature control for the toxicity test of C. dubia. Initially, neonates are exposed to toxicants while the temperature of water bath containing media increased to $35.5^{\circ}C$. After 1.25 hour of contact time, the number of the daphnids, either live (no toxic effect) or dead (toxic effect), is counted without the aid of any instrument. In both methods, median effective concentrations ($EC_{50}$ values) were computed based on the results over a range of dosed toxicant concentrations. It showed that TTBTC was as sensitive as the standard 48-hour acute bioassay and CAUST. TTBTC and CAUST were much more sensitive than the I-hour I.Q. test and 30-minute Microtox. This study indicates that TTBTC is an easier and more rapid toxicity test than the standard 48-hour acute bioassay and even CAUST.

An Experimental Study on the Application of Fireproof Panel in Tunnel Duct Slab (터널 풍도슬라브에 사용된 내화패널의 적용성에 관한 실험연구)

  • Woo Jin Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2023
  • Purpose: In this study,fire-resistance test were executed to evaluate the effectiveness of the fireproof panel attached to the PSC slab in tunnel. Method: For the fire resistance test, the RWS curve was applied and the furnace of the KICT was used. Result: As a result of the experiment, the maximum temperature measured on the concrete surface of the PSC slab with the fireproof panel was 321.8℃, which was lower than the damage limit temperature of 380℃ for concrete. Also, at the t=25mm, the maximum temperature was 35.2℃, which was lower than the damage temperature of steel, 250℃. The use of precast fire resistance panel(t=30mm) improves fire resistance of PSC structures. Conclusion: As a result of the test, a reinforcement method for attached a fireproof panel in case of fire in a tunnel or an underground roadway is provided to protect a structure from fire. In the future, it is necessary to perform the static performance test of the slab to which the fireproof panel is attached, and to confirm the adhesion performance of the fireproof panel by performing the pull-off test and the fatigue test.

Lifetime Prediction of Geogrids for Reinforcement of Embankments and Slopes through Time-Temperature Superposition

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.147-154
    • /
    • 2005
  • The creep resistance of geogrids is one of the most significant long-term safety characteristics used as the reinforcement in slopes and embankments. The failure of geogrids is defined as creep strain greater than 10%. In this study, the accelerated creep tests were applied to polyester geogrids at various loading levels of 30, 50% of the yield strengths and temperatures using newly designed test equipment. Also, the new test equipment permitted the creep testing at or above glass transition temperature($T_g$) of 75, 80, $85^{\circ}C$. The time-dependent creep behaviors were observed at various temperatures and loading levels. And then the creep curves were shifted and superposed in the time axis by applying time-temperature supposition principles. The shifting factors(AFs) were obtained using WLF equation. In predicting the lifetimes of geogrids, the underlying distribution for failure times were determined based on identification of the failure mechanism. The results confirmed that the failure distribution of geogrids followed Weibull distribution with increasing failure rate and the lifetimes of geogrids were close to 100 years which was required service life in the field with 1.75 of reduction factor of safety. Using the newly designed equipment, the creep test of geogrids was found to be highly accelerated. Furthermore, the time-temperature superposition with the newly designed test equipment was shown to be effective in predicting the lifetimes of geogrids with shorter test times and can be applied to the other geosynthetics.

A Study on the Ventilation Improvement of Diesel Locomotive Engine Load Test Building using Computational Fluid Dynamics (전산유체역학을 이용한 디젤엔진 부하시험장의 환기 개선에 관한 연구)

  • Park Duckshin;Jeong Byungcheol;Cho Youngmin;Park Byunghyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2005
  • The aim of this study is to relieve the poor ventilation problem of the diesel locomotive engine load test building, located in an urban area. This paper evaluates the ventilation performances of the studied load test building based on the temperature measurement experiment and the computational fluid dynamics (CFD) during the engine load test. The temperature rise caused by the radiator blower of the building was turned out to be the main cause of disturbing the thermal conditions of the building. The indoor temperature distributions simulated by Fluent were validated with the temperature measurement results obtained from the studied building. The simulation results indicated that the comfort condition of this building was poor We suggested several remedial changes in the duct structure of this building for the improvement of the comfort conditions. In addition, a prototype drawing combining several improved design options was proposed. and then the simulation of the temperature distribution in the proposed prototype was performed. The result indicated that the indoor thermal condition of this proposed building was improved when compared with that of the current building.

High-Temperature Structural Analysis on the Medium-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop (소형가스루프 시험조건에서 중형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-nam;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A PHE (Process Heat Exchanger) in a nuclear hydrogen system is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute has established a small-scale gas loop for the performance test on VHTR components and recently has manufactured a medium-scale PHE prototype made of Hastelloy-X. A performance test on the PHE prototype is scheduled in the gas loop. In this study, high-temperature structural analysis modeling, and macroscopic thermal and structural analysis of the medium-scale PHE prototype by imposing the established displacement boundary constraints in the previous research were carried out under the gas loop test condition. The results obtained in this study will be compared with performance test results.

Warm-up and Cool-down Characteristics of Cryogenic Insulation Materials in Liquid Nitrogen (액체질소에서의 극저온 절연매질의 Warm-up/Cool-down 특성)

  • Lee, Sang-Hwa;Shin, Woo-Ju;Khan, Umer Amir;Oh, Seok-Ho;Sung, Jae-Kyu;Lee, Bang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.119-119
    • /
    • 2010
  • Among the various factors influencing the service life of the electric equipment, the performance of dielectric insulation materials has an important role to determine their whole service life. In order to determine the degradation of insulating materials immersed in extremely low temperature media such as liquid nitrogen, the abrupt temperature change from cryogenic to normal room temperature should be considered. But the assessments of low-temperature aging test method for the dielectric materials immersed in liquid nitrogen considering these conditions were not fully reported. Therefore, for the fundamental step to establish the suitable degradation test methods for cryogenic dielectric materials, we focused on the evaluation of ageing test methods for dielectric materials exposed to low temperature environments considering thermal shock by cool-down and warm up test.

  • PDF

The Effects of the Testing Temperatures on the Mechanical Properties of the Stainless Steel(STS301CSP) for Flat Spring (박판 스프링용 스테인리스강재(STS301CSP)의 시험온도에 따른 기계적 특성평가)

  • 류태호;원시태;박상언;임철록
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.390-395
    • /
    • 2003
  • This study examined the effects of the testing temperature on the mechanical properties of the stainless steels (STS301CSP-3/4H and STS301CSP-H) for flat spring. Hardness test and fatigue test were performed at room temperature (2$0^{\circ}C$ Tensile testandcreeptestwere performed attemperature range 2$0^{\circ}C$~10$0^{\circ}C$. The micro-victors hardness values of STS301CSP-3/4H and STS301CSP-H were HV=443 and HV=488. respectively. The Elastic modulus, tensile strength, yield strength and strain of these materials were decreased with increasing testing temperature. respectively. The maximum creep strain for 100hr atcreep temperature (10$0^{\circ}C$~20$0^{\circ}C$ and creep stress (Tensile strength$\times$50%) of these materials were 0.53%~0.58%. The fatigue limit of STS301CSP-3/4H and STS301CSP-H were 64.5Kgf/mm$^2$ and 67.4Kgf/mm$^2$, respectively.

  • PDF

A Study on the Microstructures and High Temperature Tensile Properties of Ni-base Superalloy Melt-Spun Ribbons (Ni 기 초합금 급냉응고 리본의 미세구조와 고온 인장특성에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.4
    • /
    • pp.180-184
    • /
    • 2014
  • In order to make clear relationship between high temperature tensile properties and fine microstructure of rapidly solidified cast-type Ni-base superalloys without heat treatment required for consolidation process, tensile test was carried out by changing strain rate from $5{\times}10^{-5}s^{-1}$ to $2{\times}10^{-2}s^{-1}$ and test temperature from $900^{\circ}C$ to $1050^{\circ}C$ using IN738LC and Rene'80 melt-spinning ribbons by twin roll process which were superior to ribbons by single roll process from the viewpoint of structure homogeneity. The dependence of tensile strength on strain rate and test temperature was studied and strain rate sensitivity, m, were estimated from tensile test results. From this study, it was found that tensile strength was influenced by ${\gamma}^{\prime}$ particle diameter, test temperature and strain rate, and m of ribbons exhibited above 0.3 over $950^{\circ}C$.