• Title/Summary/Keyword: Temperature rising

Search Result 667, Processing Time 0.032 seconds

A Study on the Quality Fluctuation of Hot Weather Concrete (하절기 콘크리트의 품질특성 변화에 관한 연구)

  • 김동석;정연식;유재상;김창범;이종열;김영준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.665-668
    • /
    • 2001
  • Generally, according to rising of atmospheric temperature, a consistency of concrete decreases, and a slump property of concrete is changed to be large. Also, in the strength development of concrete, the strength development rate of long-term age(28day) in comparison to strength of early age(7day) and the absolute compressive strength decreases. Accordingly, in this study, experiments about quality evaluation of concrete utilizing Ordinary Portland Cement is carried out. As a result of experiments, there were a conspicuous change in slump of concrete due to temperature increase. In conclusion, the rising of atmospheric temperature was very important factor in affecting the quality fluctuation of hot weather concrete.

  • PDF

EFFECT OF ND : YAG LASING ON TEMPERATURE RISING AND PROPERTIES OF MATTER OF DENTAL IMPLANTS (Nd : YAG LASER 조사가 치과 임플란트의 물성과 온도 상승에 미치는 영향)

  • Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.489-500
    • /
    • 1996
  • Pulsed Nd : YAG LASER has been applied to various fields in clinical dentistry including the treatment of peri-implantitis. However, LASER can affect properties of matter of dental implants which are important to maintaining the health of peri-implant tissue and can raise its temperature during lasing. So there have been warings of using LASER to treat peri-implantitis. But, the effects of laser on dental implants itself are not certain yet. So we measured the temperature rising, examined matter of properties by SEM and EDX before and after pulsed Nd : YAG lasing various intensity. 7 TPS implants and 7 HPS implants were used and pulsed Nd : YAG LASER was used in 0.3W, 1.0W, and 2.0W. 1. 2.0W LASER made polished neck portion of HPS implants reach $39.2^{\circ}C$ after 5 seconds lasing. 2. LASER made crater-like defects on plasma sprayed surface and surfaces were melted and divided by fragments after lasing. 3. There was no specific evidence of element change after lasing.

  • PDF

Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.705-714
    • /
    • 2022
  • The aim of this paper is to investigate nonlinear dynamic responses of functionally graded composite beam resting on the nonlinear viscoelastic foundation subjected to moving mass with temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory and the governing nonlinear dynamic equation is obtained by using the Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then the governing equation is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters, magnitude and velocity of the moving mass on the nonlinear dynamic responses are investigated. Also, the buckling temperatures of the functionally graded beams based on the finite strain theory are obtained.

A Study on the Heat Transfer Analysis of High-Temperature Single Bubble in Water (수중 고온 단일 기포의 열전달 해석 연구)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.117-123
    • /
    • 2024
  • Bubbles generated in water receive an upward buoyant force due to the density and pressure difference of the surrounding fluid. Additionally, the behavior, shape, and heat exchange process of bubbles vary depending on the viscosity, surface tension, rising speed, and size difference with the surrounding fluid. In this study, we modeled speed, and heat transfer of a high-temperature single bubble rising in a cylindrical water tank. For this purpose, velocity, and temperature of the bubbles were calculated using theoretical equations, to be compared with numerical simulation results. The numerical analysis was performed using a commercial software, and the stability of the numerical analysis with mesh size was confirmed through calculation of the grid convergence index. The numerical analysis of the rising speed and temperature of a single bubble showed the values to converge when the minimum cell size was 1/160 of the bubble diameter, and the temperature decrease was confirmed to be the same as that of the surrounding fluid within 0.05 seconds.

The Interfacial Stresses in Concrete Beam Strengthened with Carbon Fiber Sheets due to Temperature Rising (온도상승에 따른 탄소섬유시트 보강 콘크리트보의 계면응력)

  • Choi, Hyoung-Suk;Kim, Seong-Do;Cheung, Jin-Whan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.109-118
    • /
    • 2008
  • Carbon fiber reinforced polymer(CFRP) can be bonded to the soffit of a concrete beam as a means of repairing and strengthening the beam. In such beams, materials, concrete and carbon fiber sheets, are different in coefficient of thermal expansion. Consequently, interfacial shear stresses can be increased and debonding failure may occur at the plate ends due to temperature rising. This paper presents a method of approximate closed-form solutions for the interfacial shear stresses and conducts a beam test to compare the numerical results. In case of temperature rising over $30^{\circ}C$, interfacial stress of 0.91MPa is occurred at the end of sheet. Therefore, using carbon fiber sheet for strengthening the concrete beam, it is necessary to consider the thermal effects and to evaluate the long time behavior of the concrete beam by temperature change.

Calculation of Joule Heat and Temperature Distribution Generated on the Superconduction Magnet Structure for the KSTAR Operation Scenarios (KSTAR 운전시나리오에 대해 초전도자석 구조물에 발생되는 줄열 및 온도분포 계산)

  • Seungyon Cho;Jeong Woo Sa;Chang Ho Choi;KSTAR Team
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.56-59
    • /
    • 2002
  • Since the KSTAR magnet structure should be maintained at cryogenic temperature of about 4.5 K, even a small amount of heat might be a major cause of the temperature rising of the superconducting magnet structure. The Joule heating by eddy current induced on the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rising of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increase as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure maximum temperature of 8.4 K was obtained from PF fast discharging scenario.

  • PDF

Analysis of Heat Generation Induced by Electron Impact in X-Ray Tube Using FEM and Monte Carlo Method (유한요소법과 몬테카를로법을 이용한 X선 튜브에서 전자빔 충격에 의한 열 발생 해석)

  • Kim, Heungbae;Yoo, Tae Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.387-394
    • /
    • 2015
  • We analyze heat generation as well as temperature distribution induced by accelerated electron impact on a target in a closed x-ray tube. For the sake of accuracy, we use Monte carlo analysis. This method gives accurate energy deposit in a medium with additional information such as secondary and backscattered electron as well as their paths. A Tungsten coated layer is divided by small rectangular cell which accumulate energy loss of primary electron beam. The cells and their accumulated energy datum are used for the input of finite element analysis. The Maximum temperature rising and temperature distribution were analyzed by transient heat analysis. Some temperature parameters such as target size and coating thickness were varied to investigate temperature sensitivity. Temperatures were compared each other to find primary variable that affect temperature rising on the x-ray target. The results will be helpful in development highresolution x-ray tube and related industries.

A Model for Predicting the Effect of Increasing Air Temperature on the Net Photosynthetic Rate of Quercus mongolica Stands

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • A model was developed to predict the effects of rising air temperature on net photosynthetic rate of Quercus mongolica stands at Mt. Paekcheok-san, Kangwon-do in South Korea. The PFD (Photon flux density) and air temperature were determined from weather data from the research site and the Daegwallyeong meteorological station and gas exchange or release responses of each tree component were measured. Using these data, we simulated the effects of increases in mean annual air temperatures above current conditions on annual $CO_2$ budget of Q. mongolica stands. If mean annual air temperature is increased by 0.5, 1.0, 1.5, 2.0, 2.5 or $3.0^{\circ}C$, annual net photosynthetic rate will be increased by 8.8, 12.8, 14.5, 12.6, 9.2 and 1.0 ton $CO_2\;ha^{-1}yr^{-1}$ respectively. Simulations indicate that changes in air temperature will have a major impact on gas exchange and release in Q. mongolica stands, resulting in a net increase in the rate of carbon fixation by standing crops.

Design Controller For Rapidity Temperature Measurement-system (넓은 영역의 온도범위를 가지는 급속 온도특성측정시스템 컨트롤러 설계)

  • 신광식;정완영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.33-36
    • /
    • 2001
  • An automatic TCXO frequency-temperature test apparatus was firstly developed by using thermoelectric device may. The developed system swing stably the test temperature range from -40$^{\circ}C$ to +80$^{\circ}C$ for about 1 hour The rising temperature ratio was fairly linear with time in this test temperature range. The temperature could be controlled error in error range of ${\pm}$0.05$^{\circ}C$ in this system. The frequency-Temperature properties of TCXO or the thermoelectric properties of other electric device.

  • PDF

The Effect of Plants and Waterscape Facilities on the Thermal Indoor Environment (실내에서 식물과 수경시설이 온열환경에 미치는 영향)

  • 정연승;박인환
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.19-28
    • /
    • 1999
  • This survey is to investigate the effect of plants and waterscape facilities on the thermal indoor environment and to provide basic data for proper plant cultivation to enhance indoor landscape. The survey of the measure of comfort on the indoor environment for the residents of Taegu shows that the measure of comfort on the thermal-environment, which consist of temperature and humidity, has more negative responses than the measure on lighting . are . sound environment, which consists of air freshness, lighting condition and sound environment. The experiments on the effect of the amount of leaves and the distance of plants on the indoor thermal-environment are made. The experimental results illustrate that, as the capacity of a plant becomes greater and the distance from the plant shorter, the falling effect of temperature and the rising effect of humidity on the top of the plant are taken higher than on the side of the plant. When the same amount of leaves is set up, the distance range of the rising effect of humidity becomes wider than that of the falling effect of temperature. The investigation of the effect of waterscape facilities on the indoor thermal-environment shows that temperature and humidity of the space with installed waterscape facilities are lower and higher than without facilities, respectively.

  • PDF