• Title/Summary/Keyword: Temperature of coefficient of resistance

Search Result 537, Processing Time 0.032 seconds

Electrical Properties of Manganite Thin Films Prepared by Spin Spray Method (스핀 스프레이 법으로 제조한 망가나이트 박막의 전기적 특성)

  • Jeon, Chang Jun;Jeong, Young Hun;Yun, Ji Sun;Park, Woon Ik;Paik, Jong Hoo;Hong, Youn Woo;Cho, Jeong Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.17-22
    • /
    • 2017
  • Effects of pH value and deposition time on the electrical properties of (NMC) Ni-Mn-Cu-O and (NMCC) Ni-Mn-Cu-Co-O thin films were investigated. The NMC and NMCC films were prepared by spin spray method. The crystal structure and thickness of the annealed films were changed by the pH value and deposition time, respectively. A single phase of cubic spinel structure was confirmed for the annealed films deposited from solutions with pH 7.6. The resistivity of the annealed films was affected by the crystal structure and microstructure. The TCR (temperature coefficient of resistance) was dependent on the $Mn^{3+}/Mn^{4+}$. Typically, the resistivity of $70.5{\Omega}{\cdot}cm$ and TCR of -3.56%/K at room temperature were obtained for NMCC films deposited from solutions with pH 7.6 for 5 min, and annealed at $450^{\circ}C$ for 3 h.

Effect of Cr2O3-MgO-Y2O3 Addition on Mechanical Properties of Mullite Ceramics (Cr2O3-MgO-Y2O3 첨가에 따른 뮬라이트 세라믹스의 기계적 성질)

  • Lim, Jin-Hyeon;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Jeong, Dae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.762-767
    • /
    • 2017
  • Mullite ($3Al_2O_3{\cdot}2SiO_2$) has emerged as a promising candidate for high-temperature structural materials due to its erosion resistance, chemical and thermal stabilities, relatively low thermal expansion coefficient, excellent thermal shock and creep resistances, and low dielectric constant. However, since the pure mullite sintering temperature is as high as $1,600{\sim}1,700^{\circ}C$, there is an increasing need for a sintering additive capable of improving the strength characteristics while lowering the sintering temperature. Herein we have tried to obtain the optimal sintering additive composition by adding MgO, $Cr_2O_3$, and $Y_2O_3$ to mullite, followed by sintering at $1,325{\sim}1,550^{\circ}C$ for 2 h. With additives of 2 wt% of MgO, 2 wt% of $Cr_2O_3$, 4 wt% of $Y_2O_3$, A density of $3.23g/cm^3$ was obtained for the sintered body at $1,350^{\circ}C$ upon using 2 wt% MgO, 2 wt% $Cr_2O_3$, and 4 wt% $Y_2O_3$ as additives. The three-point flexural strength of that was 275 MPa and the coefficient of thermal expansion (CTE) was $4.15ppm/^{\circ}C$.

Mechanical Property and Fatigue Bahavior of $Al/{Al_2}{O_3}$ Metal Matrix Composite ($Al/{Al_2}{O_3}$금속복합재료의 기계적 성질과 피로거동)

  • Song, Jeong-Il;LIm, Hong-Jun;Han, Gyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.753-764
    • /
    • 1996
  • The metal matrix composites(MMC) are currently receiving a great deal of attention. These composites possess exellent mechanical and physical properties such as modulus, strength, wear resistance and thermal stability, which make them very attractive for use in automotive piston. In this study, $Al/{Al_2}{O_3}$(15%) composites are fabricated by the squeeze casting method. Mechanical properties such as tensile strength and ductility are performed at room and elevated temperature($250^{\circ}C$ and $350^{\circ}C$), respectively. Through thermomechanical analyser, thermal expansion coefficient of $Al/{Al_2}{O_3}$ composites are conducted for ranging from room temperature to ($400^{\circ}C$.And bending fatigue tests are also performed by the rotary bending machine at room temperature.The tensile strength and elastic modulus have been improved up to 38% and 35% by the addition of the reinforcements, respectively. Thermal expansion coefficients of MMCs which is located normal and parralel to the applied pressure are showed slightly different less than 10%. Fatigue strengh of the composite was improved by about 20% compared with that of unreinforced Al alloy. The results of this study will be used to understand the basic fracture behavior of MMCs and eventually to expand the applocation of MMCs as a machine parts undertaken various loadings.

A Study on the Assembly Process and Reliability of COF (Chip-On-Flex) Using ACFs (Anisotropic Conductive Films) for CCM (Compact Camera Module) (ACF를 이용한 CCM (Compact Camera Module)용 COF(Chip-On-Flex) 실장 기술 및 신뢰성 연구)

  • Chung, Chang-Kyu;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.7-15
    • /
    • 2008
  • In this paper, the Chip-On-Flex (COF) assembly process using anisotropic conductive films (ACFs) was investigated and the reliability of COF assemblies using ACFs was evaluated. Thermo-mechanical properties of ACFs such as coefficient of thermal expansion (CTE), storage modulus (E'), and glass transition temperature $(T_g)$ were measured to investigate the effects of ACF material properties on the reliability of COF assemblies using ACFs. In addition, the bonding conditions for COF assemblies using ACFs such as time, temperature, and pressure were optimized. After the COF assemblies using ACFs were fabricated with optimized bonding conditions, reliability tests were then carried out. According to the reliability test results, COF assemblies using the ACF which had lower CTE and higher $T_g$ showed better thermal cycling reliability. Consequently, thermo-mechanical properties of ACFs, especially $T_g$, should be improved for high thermal cycling reliability of COF assemblies using ACFs for compact camera module (CCM) applications.

  • PDF

Design and Fabrication of Silicon Flow Sensor For Detecting Air Flow (유속 감지를 위한 실리콘 유량센서의 설계 및 제작)

  • 이영주;전국진;부종욱;김성태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.113-120
    • /
    • 1994
  • Silicon flow sensor that can detect the velocity and direction of air flow was designed and fabricated by integrated circuit process and bulk micromachining technique. The flow sensor consists of three-layered dielectric diaphragm, a heater at the center of the diaphragm, and four thermopiles surrounding the heater at each side of diaphragm as sensing elements. This diaphragm structure contributes to improve the sensitivity of the sensor due to excellent thermal isolation property of dielectric materials and their tiny thickness. The flow sensor has good axial symmetry to sense 2-D air flow with the optimized sensing position in the proposed structure. The sensor is fabricated using CMOS compatible process followed by the anisotropic etching of silicon in KOH and EDP solutions to form I$\mu$ m thick dielectric diaphragm as the last step. TCR(Temperature Coefficient of Resistance) of the heater of the fabricated sensors was measured to calculate the operating temperature of the heater and the output voltage of the sensor with respect to flow velocity was also measured. The TCR of the polysilicon heater resistor is 697ppm/K, and the operating temperature of the heater is 331$^{\circ}C$ when the applied voltage is 5V. Measured sensitivity of the sensor is 18.7mV/(m/s)$^{1/2}$ for the flow velocity of smaller than 10m/s.

  • PDF

The Influence of Carbon Fiber Heat Treatment Temperature on Carbon-Carbon Brakes Characteristics

  • Galiguzov, Andrey;Malakho, Artem;Kulakov, Valery;Kenigfest, Anatoly;Kramarenko, Evgeny;Avdeev, Viktor
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • The effects of heat treatment temperature (HTT) of polyacrylonitrile-based carbon fiber (CF) on the mechanical, thermal, and tribological properties of C/C composites were investigated. It was found that HTT (graphitization) of CF affects the thermal conductivity and mechanical and tribological characteristics of C/C composites. Thermal treatment of fibers at temperatures up to $2800^{\circ}C$ led to a decrease of the wear rate and the friction coefficient of C/C composite-based discs from 7.0 to 1.1 ${\mu}m$/stop and from 0.356 to 0.269, respectively. The friction surface morphology and friction mechanism strongly depended on the mechanical properties of the CFs. The relief of the friction surface of composites based on CFs with final graphitization was also modified, compared to that of composites based on initial fibers. This phenomenon could be explained by modification of the abrasive wear resistance of reinforcement fibers and consequently modification of the friction and wearing properties of composites. Correlation of the graphitization temperature with the increased flexural and compressive strength, apparent density, and thermal conductivity of the composites was also demonstrated.

Research on Performance of LSM Coating on Interconnect Materials for SOFCs

  • Zhai, Huijuan;Guan, Wanbing;Li, Zhi;Xu, Cheng;Wang, Wei Guo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.777-781
    • /
    • 2008
  • Experiments were conducted using SUS430 and Crofer 22 APU steels coated by LSM using plasma spray and slurry spray methods, respectively. High-temperature conductivity and oxidation resistance were investigated. For comparison, SUS430 and Crofer 22 APU without LSM coating were also investigated and coefficient of thermal expansion (CTE) was measured. The results show that the materials without LSM coating exhibit almost the same CTE as YSZ electrolyte in a range of temperatures of $550{\sim}850^{\circ}C$. When coated with LSM, the oxidation rate of the steels decreases by $30{\sim}40%$ using slurry spray and by $10{\sim}30%$ using plasma spray whereas the steels using plasma spray have a better high-temperature conductivity than the steels using slurry spray. It is thus concluded that the LSM coating has a limited effect on increasing high-temperature conductivity while it can effectively reduce the oxidation of the steels.

Structural and Electrical Properties of Semiconducting YBCO Thin Film Annealed at Various Temperatures for Uncooled Infrared Sensor Application (비냉각형 적외선 센서로 응용하기 위한 반도성 YBa2Cu3O6+x 박막의 열처리 온도에 따른 구조적 전기적 특성)

  • Lee, Tae-Ho;Lee, Sung-Gap;Yeo, Jin-Ho;Jung, Hye-Rin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.731-735
    • /
    • 2013
  • YBCO thin films on $SiO_2$/Si substrate were fabricated by spin-coaing of an alkoxide-derived precursor and heat treatment. The structural and electrical properties of the YBCO films were investigated as functions of annealing temperature at $600{\sim}800^{\circ}C$. Although YBCO single phase was not synthesized, dense films of YBCO matrix phase and minor second phases have been successfully fabricated at the annealing temperatures of $650{\sim}800^{\circ}C$. Thickness and temperature coefficient of resistance (TCR) of YBCO thin films with annealing temperature of $750^{\circ}C$ were 0.31 ${\mu}m$ and $-2.92%/^{\circ}C$, respectively.

High temperature Friction and Wear of Friction Material; The Effect of the Relative Amount of Graphite and Zirconium Silicate (ZrSiO$_4$) (흑연과 지르콘의 상대적 함량에 따른 마찰재의 고온 마찰 및 마모특성)

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • Tribological behavior of novolac resin-based friction materials with three different relative amounts of graphite and zirconium silicate was investigated by using a pad-on-disk type friction tester. The goal of this paper is to examine the effects of the relative amount of a lubricant and an abrasive in the automotive friction material on friction and wear characteristics at elevated temperature. Friction and wear of friction materials were affected by the existence of transfer film(3$\^$rd/ body layer) at friction interface and the composition of friction material, especially lubricant amount. The friction material with higher content of graphite indicated homogenized and durable transfer film, and resulted in stable friction coefficient regardless of the increase in friction heat. The experimental result also showed that the higher concentration of ZrSiO$_4$ in friction material aggravated friction stability and wear resistance due to the higher friction heat generated at fiction interface during high temperature friction test.

Fabrication and Characteristics of Tantalum Nitride Thin-Film Strain Gauges (질화탄탈 박막형 스트레인 게이지의 제작과 특성)

  • Chung, Gwiy-Sang;Woo, Hyung-Soon;Kim, Sun-Chul;Hong, Dae-Sun
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.303-308
    • /
    • 2004
  • This paper descibes on the characteristics of Ta-N(tantalum nitride) ceramic thin-film strain gauges which were deposited on Si substrates by DC reactive magnetron sputtering in an argon-nitrogen atmosphere (Ar-$(4{\sim}16%)N_{2}$) for high-temperature applications. These films were annealed in $2{\times}10^{-6}$ Torr vacuum furnace at the range of $500{\sim}1000^{\circ}C$. Optimum deposition atmosphere and annealing temperature were determined at $900^{\circ}C$ for 1 hr. in 8% $N_{2}$ gas flow ratio. Under optimum formation conditions, the Ta-N thin-film for strain gauges was obtained a high-resistivity of $768.93{\mu}{\Omega}{\cdot}cm$, a low temperature coefficient of resistance (TCR) of -84 ppm/$^{\circ}C$ and a good longitudinal gauge factor (GF) of 4.12.