• 제목/요약/키워드: Temperature of coefficient of resistance

검색결과 537건 처리시간 0.037초

무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향 (Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영;고태헌
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.808-815
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].

분무 주조 과공정 Al-Si계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Cast Hypereutectic Al-Si Based Alloy)

  • 김민수;방원규;박우진;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2005
  • Spray casting of hypereutectic Al-Si based alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. Hypereutectic Al-Si based alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, low coefficient of thermal expansion, high thermal stability, and good creep resistance. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. High temperature deformation behavior of the hypereutectic Al-Si based alloy has been investigated by applying the internal variable theory proposed by Chang et al. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test.

  • PDF

Microbolometer의 열적.구조적 설계 및 흡수층 공정 (Thermal and Structural Design, and Absorption Layer Fabrication of Microbolometer)

  • 한명수;박영식;안수창;강태영;임성수;이홍기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.391-392
    • /
    • 2008
  • A surface micromachined uncooled microbolometer based on the amorphous silicon was designed and fabricated. We designed the microbolometer with a pixel size of $35\times35$, $44\times44{\mu}m^2$ and a fill factor of about 70 % by considering such important factors as the thermal conductance, thermal time constant, the temperature coefficient of resistance, and device resistance. Finally, we successfully fabricated the microbolometer by using surface MEMS technology, and the properties of bolometer have been measured as such that TCR and absorptance can be achieved above -2.5%/K and about 90% with titanium layer, respectively.

  • PDF

소결온도 및 SiO2 첨가량에 따른 탄화규소의 마모 특성 (Wear Characteristics of SiC by Sintered Temperature and SiO2 Contents)

  • 박성호;박원조;윤한기
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.1003-1009
    • /
    • 2008
  • In this study, liquid phase sintered SiC (LPS-SiC) materials were made by hot pressing method. The particle size of nano-SiC powder was 30nm. Alumina ($Al_2O_3$), yttria ($Y_2O_3$) and silica ($SiO_2$) were used for sintering additives. To investigate effects of $SiO_2$, ratios of $SiO_2$ contents were changed by five kinds. Materials have been sintered for 1 hour at $1760^{\circ}C$, $1780^{\circ}C$ and $1800^{\circ}C$ under the pressure of 20MPa. The system of sintering additives which affects a property of sintering as well as the influence depending on compositions of sintering additives were investigated by measurement of density, mechanical properties such as flexural strength, vickers hardness and sliding wear resistance were investigated to make sure of the optimum condition which is about matrix of $SiC_f$/SiC composites. The abrasion test condition apply to load of 20N at 100RPM for 20min. Sintered density, flexural strength of fabricated LPS-SiC increased with increasing the sintering temperature. And in case of LPS-SiC with low $SiO_2$, sliding wear resistance has very excellent. Monolithic SiC $1800^{\circ}C$ sintering temperatures and 3wt% have excellent wear resistance.

In-Situ Heat Cooling using Thick Graphene and Temperature Monitoring with Single Mask Process

  • Kwack, Kyuhyun;Chun, Kukjin
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.155-158
    • /
    • 2015
  • In this paper, in-situ heat cooling with temperature monitoring is reported to solve thermal issues in electric vehicle (EV) batteries. The device consists of a thick graphene cooler on top of the substrate and a platinum-based resistive temperature sensor with an embedded heater above the graphene. The graphene layer is synthesized by using chemical vapor deposition directly on the Ni layer above the Si substrate. The proposed thick graphene heat cooler does not use transfer technology, which involves many process steps and does not provide a high yield. This method also reduces the mechanical damage of the graphene and uses only one photomask. Using this structure, temperature detection and cooling are conducted simultaneously using one device. The temperature coefficient of resistance (TCR) of a $1{\times}1mm^2$ temperature sensor on 1-$\grave{i}m$-thick graphene is $1.573{\times}10^3ppm/^{\circ}C$. The heat source cools down $7.3^{\circ}C$ from $54.4^{\circ}C$ to $47.1^{\circ}C$.

TiNxOy/TiNx 다층 박막을 이용한 고저항 박막 저항체의 구조 및 전기적 특성평가 (Structural and Electrical Properties High Resistance of TiNxOy/TiNx Multi-layer Thin Film Resistors)

  • 박경우;허성기;;안준구;윤순길
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.591-596
    • /
    • 2009
  • $TiN_xO_y/TiN_x$ multi-layer thin films with a high resistance(${\sim}k{\Omega}$) were deposited on $SiO_2/Si$ substrates at room temperature by sputtering. The $TiN_x$ thin films show island and smooth surface morphology in samples prepared by ${\alpha}$ and RF magnetron sputtering, respectively. $TiN_xO_y/TiN_x$ multi-layer in has been developed to control temperature coefficient of resistance(TCR) by the incorporation of $TiN_x$ layer(positive TCR) inserted into $TiN_xO_y$ layers(negative TCR). Electrical and structural properties of sputtered $TiN_xO_y/TiN_x$ multi-layer films were investigated as a function of annealing temperature. In order to achieve a stable high resistivity, multi-layer films were annealed at various temperatures in oxygen ambient. Samples annealed at $700^{\circ}C$ for 1 min exhibited good TCR value of approximately $-54 ppm/^{\circ}C$ and a stable high resistivity around $20k{\Omega}/sq$. with good reversibility.

마이크로볼로미터 소자설계에 따른 적외선 검출특성 (Infrared Response Characterization on the Microbolometer Device Design)

  • 한명수;안수창;강태영;임성수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.343-344
    • /
    • 2008
  • A surface micromachined uncooled microbolometer based on the amorphous silicon was designed, fabricated, and characterized. We designed the microbolometer with a pixel size of $44\times44{\mu}m^2$ and a fill factor of about 50 % ~ 70% by considering such important factors as the thermal conductance, thermal time constant, the temperature coefficient of resistance, and device resistance. Also, we successfully fabricated the microbolometer by using surface MEMS technology. Finally, we investigated responsivity and detectivity properties depends on the active area size.

  • PDF

페롭스카이트 구조 Sr(Ti1-xFex)O3 후막 가스센서의 특성 (Characteristics of perovskite-structure Sr(Ti1-xFex)O3 thick film gas sensors)

  • 김광호;이운영;이현규;박진성
    • 센서학회지
    • /
    • 제18권6호
    • /
    • pp.456-461
    • /
    • 2009
  • Perovskite-structure $Sr(Ti_{1-x}Fe_x)O_3$ thick films, in which x is 0.4 or 0.6, were prepared by normal ceramic process on alumina substrate. Electrical resistance was measured as a function of thermal treatment condition including atmosphere, time, and temperature. The resistance of $Sr(Ti_{1-x}Fe_x)O_3$ films is lower than those of $SrTiO_3$ or $SrFeO_3$ films. The temperature coefficient of resistance over $550^{\circ}C$ was measured to be 0 for the $Sr(Ti_{1-x}Fe_x)O_3$ films after thermal treatment at $1100^{\circ}C$ in air. The sensing property of the films was also measured as a function of temperature and gas such as $O_2$, CO, $CO_2$, NO and $NO_2$. $Sr(Ti_{1-x}Fe_x)O_3$ films showed a good sensing property for $O_2$, but no sensing signal for CO, $CO_2$, NO and $NO_2$.

중.저온형 고체 산화물 연료전지의 공기극 물질로 사용되는 Pr0.3Sr0.7CoxMn(1-x)O3 (x=0, 0.3, 0.5, 0.7, 1)에 관한 연구 (Study of Pr0.3Sr0.7CoxMn(1-x)O3 as the Cathode Materials for Intermediate Temperature SOFC)

  • 박광진;김정현;배중면
    • 한국세라믹학회지
    • /
    • 제44권4호
    • /
    • pp.214-218
    • /
    • 2007
  • The decrease of polarization resistance in cathode is the key point for operating at intermediate temperature SOFC (solid oxide fuel cell). In this study, the influence of Co substitution in B-site at complex perovskite on the electronic conductivity of PSCM ($Pr_{0.3}Sr_{0.7}Co_xMn_{(1-x)}$) was investigated. The PSCM series exhibits excellent MIEC (mixed ionic electronic conductor) properties. The ASR (area specific resistance) of PSCM3773 was $0.174{\Omega}{\cdot}cm^2\;at\;700^{\circ}C$. The activation energy of PSCM3773 was also lower than other compositions of PSCM. The TEC(thermal expansion coefficient) was decreased by addition of Mn. The ASR values were increased gradually during the thermal cycling test of PSCM37773 due to the delamination between electrolyte and cathode materials. The delamination was caused by the difference of TEC.

산화물계 NTC 서미스터의 특성 (Properties of Oxide Systems for NTC Thermistors)

  • 이승관;이해연;이선학;허정섭;김현식;오영우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1855-1857
    • /
    • 1999
  • $Mn_{1-x}Fe_{2+x}O_4$, $Mg_{1-x}Fe_{2+x}O_4$ (x=0.0, 0.025, 0.1, 0.2) for negative temperature coefficient (NTC) thermistor were prepared by calcining at $800^{\circ}C$ and sintering from 1100 to $1250^{\circ}C$ with $50^{\circ}C$ intervals. The best linear property was obtained in the Mn-based sample sintered at $1200^{\circ}C$ with x=0.0 composition. Temperature coefficient of resistance, $\alpha$, was -3.0 %/$^{\circ}C$ in the Mg-based sample at $25^{\circ}C$. Thermistor parameter, B, was in the range of 2500 [K] $\sim$7400 [K]. The results show the possibility that Mn-Ni-Co based thermistor could be substituted by the composition used in this study.

  • PDF