• 제목/요약/키워드: Temperature of coefficient of resistance

검색결과 537건 처리시간 0.024초

플러그 밸브의 포트형상 변화에 따른 유동특성 연구 (A study on the flow characteristics in a plug valve with various port shapes)

  • 최근우;박권종;김윤제
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.259-264
    • /
    • 2000
  • The functions of the plug valve are the control of flow rate as well closing and opening pipe lines. Analyses on the flow characteristics in plug valve port are required to improve the performance and safety at severe operating conditions such as high-pressure and high-temperature. In this study, numerical analyses are carried out with varying the opening rate (fraction of the full open to close) of the valve and the shapes of valve Uk: straight, convex, concave and mixed shapes. The parameters influencing the flow characteristics in the valve are the discharge coefficient( $C_v$) and the resistance coefficient( K). Therefore, the distributions of static pressure, velocity vector and stream lines are investigated, and $C_v$ and K are calculated in each opening rate and shape. In case of full open, the static pressure passed through the valve port has almost been recovered. However, in case of other opening rates, the pressure does not permanently regained due to pressure drop leading to loss. This phenomenon in each shape of the valve shows the different behaviors. Calculation results show that the mixed shape has the best flow attribute.

  • PDF

La3+ doped (Ba1-x Cax) TiO3의 PTCR 특성에 미치는 첨가제의 영향 (Effect of Additives on the PTCR Characteristics of La3+ Doped(Ba1-xCax)TiO4 Ceramics)

  • 강원호;오봉인;김재현;이경희
    • 한국세라믹학회지
    • /
    • 제25권1호
    • /
    • pp.42-48
    • /
    • 1988
  • Commercially available PTCR (Postive Temperature Coefficient of Resistivity) ceramics which have low room temperature resistance, high PTC effect and temperature coefficient were prepared by La3+ doped semiconducting barium calcium titanate soild solutions. PTCR characteristics were remarkably improved by addition of AST (1/3 Al2O3$.$3/4SiO2$.$1/4TiO2) and MnCl2. That can be explained by formation of liquid phase during sintering and acceptor level on the intergranular layer. Resistivity anormaly increased with decreasing cooling rate. Optimum manufacturing conditions were cooling rate below 100$.$C/hr, Ca and Mn content of 4 mol% &, 0.09-0.12mol% respectively.

  • PDF

세라믹/금속접합재의 열사이클피로에 따른 접합계면의 잔류응력분포 특성 (Singular Stress Field Analysis and Strength Evaluation in Ceramic/.Metal Joints)

  • 박영철;김현수;허선철;강재욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.709-713
    • /
    • 1996
  • The ceramic has such high qualities as light weight, abrasion resistance, heat resistance compared with metal, but since it is breakable, it can't be used as structural material and it is desirable to joining metal which is full of toughness, but, according as the ceramic/metal joint is executed at high temperature, the joint residual stress develops near the joint sides in the process of cooling the high temperature down to the suitable temperature due to difference of the thermal expansion coefficient between ceramic and metal, and the joint residualstress lowers the fracture strength. In this study, to ensure security and improvement of bending strength, 1 studies on see distribution shape of residual stress according to high thermal cycle, and the influnence of theraml cycle and distribution shape of residual stess on joint-strength.

  • PDF

텅스텐 첨가에 의한 적외선 소자용 바나듐 옥사이드의 특성 향상 (Improvement of bolometric properties of vanadium oxide by addition of tungsten)

  • 한용희;최인훈;김근태;신현준;치엔;문성욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.207-207
    • /
    • 2003
  • Uncooled infrared(IR) detectors that use a microbolometer with a large focal-plane array(FPA) have been developed with surface micromachining technology. There are many materials for microbolometers, such as metals, vanadium oxide, semiconductors and superconductors. Among theses, vanadium oxide is a promising material for uncooled microbolometers due to it high temperature coefficient of resistance(TCR) at room temperature. It is, however, is very difficult to deposit vanadium oxide thin films having a high TCR and low resistance because of the process limits in microbolometer fabrication. In general, vanadium oxides have been applied to microbolometer in mixed phases formed by ion beam deposition methods at low temperature with TCR in the range from -1.5 to -2.0%K.

  • PDF

탄소강 담금질 공정의 온도 측정방법에 대한 고찰 (A Study on Temperature Measurement for Quenching of Carbon Steel)

  • 김동규;정경환;강성훈;임용택
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2010
  • To achieve desired microstructure and mechanical property of a manufacturing product, heat treatment process is applied as a secondary process after forging. Especially, quenching process is used for improving strength, hardness, and wear resistance since phase transformation occurs owing to rapid heat transfer from the surface of the specimen. In the present paper, a study on surface temperature measurement for water quenching of eutectoid steel was investigated. In order to determine the temperature history in experiments, three different measuring schemes were used by varying installation techniques of K-type thermocouples. Depending on the measured temperature distribution at the surface of the specimen, convective heat transfer coefficients were numerically determined as a function of temperature by the inverse finite element analysis considering the latent heat generation due to phase transformation. Based on the inversely determined convective heat transfer coefficient, temperature, phase, and hardness distributions in the specimen after water quenching were numerically predicted. By comparing the experimental and computational hardness distribution at three different locations in the specimen, the best temperature measuring scheme was determined. This work clearly demonstrates the effect of temperature measurement on the final mechanical property in terms of hardness distribution.

초음파 감쇠 및 전기저항 측정법에 의한 발전소 고온배관의 크리프손상 평가 (Nondestructive Creep Damage Evaluation of High-Temperature Pipelines by Ultrasonic Attenuation Measurement and Electric Resistance Methods)

  • 이인철;길두송;정계조;조용상;이상국
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.100-107
    • /
    • 1999
  • Due to the high temperature and pressure, the materials of pipeline in power plant are degraded by creep damage. So far, many conventional measurement techniques such as replica method, electric resistance method, adn hardness test method for creep damage have been used. Among them, the replica method has mainly been used for the inspection of components. But this technique is restricted to the applications at the surface of the objects and cannot be used to material inside. In this paper, the measuring methods of evaluation by using ultrasonic attenuation and electric resistance for the creep detection of creep damage in the form of cavities on grain boundaries or intergranular microcracks were carried out. Absolute measuring method of quantitave ultrasonic attenuation technique for 1Cr0.5Mo material degradation was analyzed for determining the creep degradation steps using life prediction formula. As a result of measurement for creep specimens, we founded that the coefficient of utrasonic attenuation was increased as the increase of creep life fracton(${phi}c$) and the decreasing rate of wlwctric resistance was also increased.

  • PDF

The Development of an Electroconductive SiC-ZrB2 Ceramic Heater through Spark Plasma Sintering

  • Ju, Jin-Young;Kim, Cheol-Ho;Kim, Jae-Jin;Lee, Jung-Hoon;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.538-545
    • /
    • 2009
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40 and 45vol.% of Zirconium Diboride (hereafter, $ZrB_2$) powders with Silicon Carbide (hereafter, SiC) matrix. The SiC-$ZrB_2$ composites, the sintered compacts, were produced through Spark Plasma Sintering (hereafter, SPS), and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffractometer (hereafter, XRD) analysis. The relative density of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, and SiC+45vol.%$ZrB_2$ composites were 88.64%, 76.80%, 79.09% and 88.12%, respectively. The XRD phase analysis of the sintered compacts demonstrated high phase of SiC and $ZrB_2$ but low phase of $ZrO_2$. Among the SiC-$ZrB_2$ composites, the SiC+35vol.%$ZrB_2$ composite had the lowest flexural strength, 148.49MPa, and the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 204.85MPa, at room temperature. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites were $6.74\times10^{-4}$, $4.56\times10^{-3}$, $1.92\times10^{-3}$, and $4.95\times10^{-3}\Omega{\cdot}cm$ at room temperature, respectively. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$ SiC+40vol.%$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites had Positive Temperature Coefficient Resistance (hereafter, PTCR) in the temperature range from $25^{\circ}C$ to $500^{\circ}C$. The V-I characteristics of the SiC+40vol.%$ZrB_2$ composite had a linear shape. Therefore, it is considered that the SiC+40vol.%$ZrB_2$ composite containing the most outstanding mechanical properties, high resistance temperature coefficient and PTCR characteristics among the sintered compacts can be used as an energy friendly ceramic heater or electrode material through SPS.

$\beta$-Sic-$TiB_2$복합체의 파괴인성과 전기전도도젠 미치는 YAG의 영향 (Effect of the YAG with fracture toughness and electric conductive of $\beta$-Sic-$TiB_2$)

  • 윤세원;주진영;신용덕;여동훈;박기엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1545-1547
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$TiB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density and the mechanical properties of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_3$ contents because YAG of reaction between $Al_{2}O_3$ and $Y_{2}O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism. the fracture toughness showed 7.1MPa${\cdot}m^{1/2}$. For composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature The electrical resistivity and the resistance temperature coefficient respectively showed the lowest of 6.0${\sim}10^{-4}{\Omega}{\cdot}$ cm and 3.1${\times}10^{-3}/^{\circ}C$ for composite added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of 25$^{\circ}C$ to 700$^{\circ}C$.

  • PDF

판형 휜을 갖는 열교환기의 휜효율에 관한 수치해석적 연구 (Numerical study for the fin efficiency of the heat exchanger having plate fins)

  • 강희찬
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.903-911
    • /
    • 1999
  • This study is discussed about the heat transfer coefficient and the fin efficiency of the heat exchanger having plate fins. A new definition for the fin efficiency of the heat exchanger is proposed. More than one hundred cases were tested numerically for the plate fins having uniform and non-uniform heat transfer coefficient. The previous models for the fin efficiency and the pure heat transfer coefficient were applicable to the heat exchanger only when the NTU is very small. It was found that the fin efficiency of the heat exchanger was nearly the same as the normalized fin temperature. The present model could estimate the pure heat transfer coefficient within a few percent in the present test range of 0<NTU<2.5.

  • PDF

液狀 燒結에 의한 ${\beta}$-SIC TiB$_2$系 導電性 複合體의 特性(Ⅱ) (Properties of ${\beta}$-SIC TiB$_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering(Ⅱ))

  • 신용덕;임승혁;송준태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권6호
    • /
    • pp.263-270
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and annealed ${\beta}-SiC-TiB_2$,/TEX> electroconductive ceramic composites were investigated as function as functions of the liquid forming additives of $Al_2O_3+Y_2O_3$. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$,/TEX>, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_3$ contents in pressureless annealing method because YAG of reaction between $Al_2O_3$ was increased. The flexural strength showed the highest value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives in pressed annealing method at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed 7.1 MPa ${\cdot}\;m^{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $6.0{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm(25\'^{\circ}C}$ and $3.0{\times}10^{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature, respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from 25 $^{\circ}C$ to 700 $^{\circ}C$.

  • PDF