• Title/Summary/Keyword: Temperature monitoring

Search Result 2,287, Processing Time 0.028 seconds

Plant Growth Monitoring Using Thermography -Analysis of nutrient stress- (열영상을 이용한 작물 생장 감시 -영양분 스트레스 분석-)

  • 류관희;김기영;채희연
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2000
  • Automated greenhouse production system often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to nutrient stresses. Thermal images were obtained from lettuce, cucumber, and pepper plants. Plants were placed in growth chamber to provide relatively constant growth environment. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. In a case of the both N deficiency and excess, the leaf temperatures of cucumber were $2^{\circ}C$ lower than controlled temperature. The leaf temperature of cucumber was $2^{\circ}C$ lower than controlled temperature only when it was under N excess stress. For the potassium deficiency or excess stress, the leaf temperaures of cucumber and hot pepper were $2^{\circ}C$ lower than controls, respectively. The phosphorous deficiency stress dropped the leaf temperatures of cucumber and hot pepper $2^{\circ}C$ and $1.5^{\circ}C$ below than controls. However, the leaf temperature of lettuce did not change. It was possible to detect the changes in leaf temperature by infrared thermography when subjected to nutrition stress. Since the changes in leaf temperatures were different each other for plants and kinds of stresses, however, it is necessary to add a nutrient measurement system to a plant-growth monitoring system using thermography.

  • PDF

Development of Realtime Temperature & Humidity Logging and Monitoring System using Ubiquitous Sensor Network (유비쿼터스 센서 네트워크를 이용한 실시간 온.습도 기록 및 모니터링 시스템 개발)

  • Cheon, Seong-Sim;Kim, Jung-Ja;Won, Yong-Gwan;Pham, Hai Trieu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.96-105
    • /
    • 2011
  • Ubiquitos sensor network(USN) is a technology which is widely used in our life. This paper introduces an example of design and implementation for a system which is based on the USN technology and can provide an efficient management tool for a space that should be precisely controlled for a certain range of uniformity in temperature and humidity. This introduced system builds a wireless sensor network using a number of sensor modules that are equipped with temperature and humidity sensors, and collects temperature and humidity information in real-time while simultaneously providing a method for monitoring the status of temperature and humidity by the graphical user interface. Also, the system will give a warning signal if the monitored values are differ from the pre-specified values of temperature and humidity for each sensor module more than a certain amount of tolerance. This temperature and humidity logging and monitoring system can perform better management for the space easily and efficiently by automating the existing manual method for data collection and management. Furthermore, using the stored data, it can make possible to perform post-analysis on the problems caused by temperature and humidity and to obtain information for environmental enhancement for the space.

Spatial Interpolation and Assimilation Methods for Satellite and Ground Meteorological Data in Vietnam

  • Do, Khac Phong;Nguyen, Ba Tung;Nguyen, Xuan Thanh;Bui, Quang Hung;Tran, Nguyen Le;Nguyen, Thi Nhat Thanh;Vuong, Van Quynh;Nguyen, Huy Lai;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.556-572
    • /
    • 2015
  • This paper presents the applications of spatial interpolation and assimilation methods for satellite and ground meteorological data, including temperature, relative humidity, and precipitation in regions of Vietnam. In this work, Universal Kriging is used for spatially interpolating ground data and its interpolated results are assimilated with corresponding satellite data to anticipate better gridded data. The input meteorological data was collected from 98 ground weather stations located all over Vietnam; whereas, the satellite data consists of the MODIS Atmospheric Profiles product (MOD07), the ASTER Global Digital Elevation Map (ASTER DEM), and the Tropical Rainfall Measuring Mission (TRMM) in six years. The outputs are gridded fields of temperature, relative humidity, and precipitation. The empirical results were evaluated by using the Root mean square error (RMSE) and the mean percent error (MPE), which illustrate that Universal Kriging interpolation obtains higher accuracy than other forms of Kriging; whereas, the assimilation for precipitation gradually reduces RMSE and significantly MPE. It also reveals that the accuracy of temperature and humidity when employing assimilation that is not significantly improved because of low MODIS retrieval due to cloud contamination.

Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring

  • Coulon, Romain;Dumazert, Jonathan;Tith, Tola;Rohee, Emmanuel;Boudergui, Karim
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1489-1494
    • /
    • 2017
  • The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, and $LaBr_3:Ce$. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environmental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe detector was performed to minimize the detector capacitance and the required power supply. Simulations were done with the MCNPX2.7 particle transport code to estimate the intrinsic efficiency of the HPXe detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide perspective for further analysis.

The Analysis of Welding Deformation in Arc-spot Welded Structure (I) - Temperature Monitoring and Heat Transfer Analysis - (아크 점용접 구조물의 정밀 용접 열변형 해석에 관한 연구 (I) -온도 모니터링 및 열전달 모델 정립-)

  • 이원근;장경복;강성수;조상명
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.544-550
    • /
    • 2002
  • Arc-spot welding is generally used in joining of precise parts such as case and core in electronic compressor. It is important to control joining deformation in electronic compressor because clearance control in micrometer order is needed for excellent airtightness and anti-nose. The countermeasures far this deformation in field have mainly been dependent on the rule of try and error by operator's experience because of productivities. For control this deformation problem without influence on productivities, development of exact simulation model should be needed. In this study, to solve this deformation problem in arc-spot welded structure with case and core, we intend to make a simulation model that is able to predict deformation in precise order by tuning and feedback between sensing data and simulation results. This paper include development of heat input model for arc-spot welding, temperature monitoring and make a heat transfer model using sensing data in product.

Temperature-Rising Prediction and Monitoring for an Oil-immersed Power Transformer (유입변압기 중신부 온도상승 예측 및 모니터링)

  • Lee, J.Y.;Lee, C.R.;Kim, Y.H.;Park, S.W.;Yoon, J.H.;Nam, G.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.94-96
    • /
    • 2004
  • In order to observe the thermal behavior of oil immersed power transformers the temperature rise prediction algorithm and monitoring system were developed. The algorithm is formulated into a computer program based on the TNM (Thermal Network Method) which was divided into several elements, and the temperature of each element was calculated according to each time lapse. A monitoring system can show the real time active part temperatures of the transformer under various electric loads and for any types of thermal environment.

  • PDF

Development of On-line Displacement Monitoring System for High Temperature Steam Pipe of Fossil Power Plant (화력발전소 고온 증기배관 실시간 변위감시 시스템 개발)

  • Lee Young Shin;Hyun Jung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.83-89
    • /
    • 2005
  • Most domestic fossil power plants have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe systems have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plants, 3-dimensional displacement measurement system was developed for the on-line monitoring. Displacement measurement system was developed with a use of a LVDT type sensor and two rotary encoder type sensors. This system was installed and operated on the real power plant successfully.

Monitoring System of Agriculture Fields using ZigBee Modules

  • Ayurzana, Odgerel;Tsagaanchuluun, Sugir
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 2021
  • The goal of this study is to develop experiment monitoring system of agriculture fields using ZigBee wireless modules. Soil moisture, ambient temperature, atmospheric pressure and intensity of sunlight are the most important factorsto grow a wheat crop and other vegetables. In orderto monitorthe factorssoil moisture (YL69), air pressure (BMP180), temperature (DS18B20), photoresistor were used for sensing environment data. The TI CC2530 RF SoC chip was used in the system. ZigBee modules were connected to star topology. ZigBee modules send data wirelessly to a data center. This data can be displayed and analyzed on the main monitoring program as needed also sent to the client mobile. Characteristics of the sensors were determined by experiment results.

The Study on Time Series Analysis of Groundwater Data and Groundwater Recharge in Jeju Island (제주도 수리자료에 대한 시계열 분석 및 지하수 함양률 추정 연구)

  • Choi, Hyun-Mi;Lee, Jin-Yong;Ha, Kyoo-Chul;Kim, Gee-Pyo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2011
  • We examined temporal variations in and relationships among groundwater level, groundwater temperature, and electric conductivity, and estimated groundwater recharge at Jeju Island. The time lag and regulation time of groundwater level data revealed that monitoring well in Ansung (JM-AS) has the highest auto-correlation. The cross-correlations for electric conductivity-water level, precipitation-water level, and air temperature-water temperature revealed that monitoring well in Seogwi-2 (JR-SG2) (electric conductivity-water level), monitoring well in Hamo (JD-HM) (precipitation-water level), and monitoring well in Wonjongjang-2 (JT-WJJ2) (air temperature-water temperature) had the highest cross-correlations. The average groundwater recharge ratio was 39.61%, and the average groundwater recharge amount was 1,153,490,407 $m^3/yr$, which is consistent with the results of previous studies.

A Study on Output Monitoring of Green Roof Integrated PV System through Surface Temperature Algorithm (표면온도 알고리즘을 통한 옥상녹화통합형 태양광시스템의 출력 모니터링 연구)

  • Kim, Tae-Han;Park, Sang-Yeon
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.89-95
    • /
    • 2015
  • The centralized power supply system and rainwater treatment system, which are major infrastructure in modern cities, are showing their limitations in accommodating environment load due to climate changes that has aggravated recently. As a result, complex issues such as shortage of reserve power and urban flooding have emerged. As a single solution, decentralized systems such as a model integrating photovoltaic system and rooftop greening system are suggested. When these two systems are integrated and applied together, the synergy effect is expected as the rooftop greening has an effect of preventing urban flooding by controlling peak outflow and also reduces ambient temperature and thus the surface temperature of solar cells is lowered and power generation efficiency is improved. This study aims to compare and analyze the monitoring results of four algorithms that define correlations between micro-climate variables around rooftop greening and the surface temperature of solar cells and generate their significance. By doing so, this study seeks to present an effective algorithm that can estimate the surface temperature of solar cell that has direct impact on the efficiency of photovoltaic power generation by observing climate variables.