• Title/Summary/Keyword: Temperature measuring sensor

Search Result 342, Processing Time 0.022 seconds

The Design of an Automatic System for Dairy Cattle Breeding I - The Choice of Temperature Sensor for Body Temperature Measuring - (낙농의 자동화 시스템 구성 I - 체온 감지 온도센서의 선정 -)

  • 김형주;정길도;한병성;김용준;김동원;김명순
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 1998
  • In this paper the automatic system for dairy cattle has been desisted such as body temperature measuring unit, feed supplying unit and temperature control unit. Since e disease is strongly related to the body temperature of cattle, early detection of the abnormal temperature would prevent the severe problems which nay occur in dairy farms. An electronic component AD590J is used as temperature sensor for the system, The device is highly robust against the noise since the output signal is the current so it can be applied to a long distance sensing The resolution of signal is 0.1$^{\circ}C$ and the current is 10㎷ Also 12-bit A/D converter is desisted fir interfacing the sensor with a one-chip microprocessor. A temperature measuring experiment using the developed system has been done for measuring the temperature of human beings and the system was proven to be useful for measuring the body temperature of dairy cattle properly. A geared AC motor is used for the feed supplying unit The heater and fm are used as temperature control unit. The feed supplying unit and temperature control unit are well operating in the laboratory experiment.

  • PDF

Development of an Automatic Body Temperature Measuring System for Dairy Cattle (젖소의 자동 체온 측정 시스템 개발)

  • 정길도;김형주;김용준;한병성;김명순
    • Journal of Veterinary Clinics
    • /
    • v.13 no.2
    • /
    • pp.140-143
    • /
    • 1996
  • In this paper the development of an automatic body temperature measuring system which can be attached to the milking machine has been studied. Since the disease is highly related to the body temperature of the cattle, early detection of the abnormal temperature would prevent the severe problems which may occur in dairy farms. The electronic component AD590 is used as a temperature sensor for the system. The device is highly robust against the noise since the output signal is the current. So it can be applied to the long distance sensing. The resolution of the signal is $0.1{\circ}C$ and the current is 10 mV. Also the A/D converter is designed for interfacing the sensor with a computer. A temperature measuring experiment using the developed system has been done for measuring the temperature of human beings and the system was proven to be useful for measuring the body temperature of the dairy cattle properly.

  • PDF

Solid Electrochemical Method of Measuring Hydrogen Concentration with O2-/H+ Hetero-Ionic Junction

  • Chongook Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.63-69
    • /
    • 2024
  • A novel method for measuring hydrogen concentration is introduced, along with its working principle and a novel detection algorithm. This configuration requires no additional reference compartment for potentiometric electrochemical measurements; therefore, it is the most suitable for measuring dissolved hydrogen in the liquid phase. The sensor's electromotive force saturates at a certain point, depending on the hydrogen concentration during the heating process of the sensor operation. This dynamic temperature scanning method provides higher sensitivity than the constant temperature measurement method.

Spatial Reservoir Temperature Monitoring using Thermal Line Sensor (다중온도센서를 통한 입체적인 호소 온도모니터링 평가)

  • Hwang, Ki-Sup;Park, Dong-Soon;Jung, Woo-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1002-1006
    • /
    • 2006
  • Temperature monitoring techniques per depth have been recognized as important information in the reservoir environmental issues. However, old measurement method by single temperature sensor and cable type has demerits not only for its limited measuring location but for its inconvenience of users. In this study, multi-channel temperature monitoring system was introduced and executed experiment for actual application feasibility evaluation. Both type of new techniques such as multi-channel addressable built-in temperature sensor and fiber optic multi sensor were tested in Daechung and Imha reservoir. As a result, it was proved that these kinds of temperature monitoring skills had very good performance and availability for a output of spatial, simultaneous thermal distribution focused on the user's convenience. And these measuring method and thermal data will be useful for providing basic information in a water resources investigation like reservoir stratification and environmental problems.

  • PDF

Signal Change and Compensation of Pulse Pressure Sensor Array Due to Wrist Surface Temperature (손목 피부 온도에 의한 맥센서 어레이(array)의 신호 변동 및 보정)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • A pressure sensor in pulse measurement system is a core component for precisely measuring the pulse waveform of radial artery. A pulse sensor signal that measures the pulse wave in contact with the skin is affected by the temperature difference between the ambient temperature and skin surface. In this study, we found experimentally that the signal changes of the pressure sensors and a temperature sensor were caused by the temperature of the wrist surface while the pressure sensor was contacted on the skin surface for measuring pulse wave. To observe the signal change of the pulse sensor caused by temperature increase on sensor surface, Peltier device that can be kept at a set temperature was used. As the temperature of Peltier device was kept at $35^{\circ}C$ (the maximum wrist temperature), the device was put on the pulse sensor surface. The temperature and pressure signals were obtained simultaneously from a temperature sensor and six pressure sensors embedded in the pulse sensor. As a result of signal analysis, the sensor pressure was decreased during temperature increase of pulse sensor surface. In addition, the signal difference ratio of pressure and temperature sensors with respect to thickness of cover layer in pulse sensor was increased exponentially. Therefore, the signal of pressure sensor was modified by the compensation equation derived by the temperature sensor signal. We suggested that the thickness of cover layer in pulse sensor should be designed considering the skin surface temperature.

A study on the design of Carbon Dioxide Measurement System using Infrared sensor and PID temperature control (PID 온도 제어 및 적외선 센서를 이용한 이산화탄소 측정 시스템 설계에 관한 연구)

  • Lim, Hyung-Taek;Beack, Seung-Hwa;Joo, Kwan-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.259-264
    • /
    • 1999
  • The $CO_2$ measuring system using infrared sensor has the variance according to the temperature change. Therefore, the temperature compensation should be needed to obtain a reliable measurement. In this study, the sensor module consist of infrared $CO_2$ Sensor, IR Source, pipe and the heater and measuring system has amplifier, A/D converter and microprocessor. And we suggest a method to reduce the error by using the PID temperature control. We use optimum parameters setting of Ziegler & Nichols as well as PID temperature control algorithm for the temperature compensation. In this method, PID optimum parameter is set from dummy time(L) and maximum slope(R). As a result of using this PID temperature control, it is founded that it has the fast response and low steady state error. Therefore, it is certainly proved that this is very suitable algorithm to correct the error on measurement.

  • PDF

A Study on the Temperature Measuring System of an Oral Cavity (구강 내부 온도 계측을 위한 센서 시스템 연구)

  • Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1165-1169
    • /
    • 2007
  • In this study, a novel sensor system for measuring the temperature inside an oral cavity is proposed. With this aim, a small size of thermistor was used for resolving the cavity's temperature with the resolution of $0.1^{\circ}C$. To evaluate effectiveness of our sensor system, the temperature and its output voltage characteristic, and the specifications of response are investigated. It turned out to be that our sensor system has a linear property in terms of temperature variations for a healthy subject's body temperature range and has a good response time within 3 seconds. Also, in order to investigate the medical application, our sensor system is sought to measure the real temperature variations of a subject's oral cavity and ark shell especially for 'before' and 'after' exercise mode.

Application of fiber optic BOTDA sensor for measuring the temperature distributed on the surfaces of a building (빌딩표면에 분포된 온도를 측정하기 위한 광섬유 BOTDA센서의 적용)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Park, Man-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.505-510
    • /
    • 2002
  • We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4℃ through one day.

  • PDF

Experimental Study on a Micro Flow Sensor (미소 유량 센서에 관한 실험적 연구)

  • Kim, Tae-Hoon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1783-1788
    • /
    • 2004
  • In the present paper, a micro flow sensor, which can be used at bio-delivery systems and micro heat pumps, is developed. For this, the micro flow sensor is integrated on a quartz wafer ($SiO_2$) and is manufactured by simple and convenient microfabrication processes. The micro flow sensor aims for measuring mass flow rates in the low range of about $0{\sim}20$ SCCM. The micro flow sensor is composed of temperature sensors, a heater, and a flow microchannel. The temperature sensors and the heater are manufactured by the sputtering processes in this study. In the microfabrication processes, stainless steel masks with different patterns are used to deposit alumel and chromel for temperature sensors and nichrome for the heater on the quartz wafer. The microchannel is made of Polydimethylsiloxane(PDMS) easily. A deposited quartz wafer is bonded to the PDMS microchannel by using the air plasma. Finally, we confirmed the good operation of the present micro flow sensor by measuring flow rate.

  • PDF

Temperature Compensation of NDIR $CO_2$ Gas Sensor implemented with ASIC Chip (ASIC칩내장형비분산 적외선 이산화탄소 가스센서의 온도보상)

  • Park, Jong-Seon;Cho, Hee-Chan;Yi, Seung-Hwan
    • 한국가스학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.123-128
    • /
    • 2006
  • This paper describes NDIR $CO_2$ gas sensor that shows the characteristics of temperature compensation. It consists of novel optical cavity that has two elliptical mirrors and a thermopile detector that includes ASIC chip in the same metal package for the amplification of detector output voltage and temperature sensor. The newly developed sensor modules shows high accuracy (less than +/-40 ppm) throughout the measuring concentration of $CO_2$ gas from 0 ppm to 2,000 ppm. After implementing the calculation methods of gas concentration, which is based upon the experimental results, the sensor module shows high accuracy less than +/- 5 ppm error throughout the measuring temperature range $(15^{\circ}C\;to\; 35^{\circ}C)$ and gas concentrations.

  • PDF