• Title/Summary/Keyword: Temperature hardening

Search Result 624, Processing Time 0.031 seconds

Quality Characteristics of Jeolpyun with Different Ratios of Loquat Leaf Powder (비파잎가루 첨가 비율에 따른 절편의 품질 특성)

  • Kang, Yang-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.5
    • /
    • pp.842-849
    • /
    • 2015
  • The purpose of this study was to determine the optimal mixing ratio of hot-air dried loquat leaf powder and optimum conditions for making Jeolpyun containing hot-air dried loquat leaf powder (LLP). Samples of Jeolpyun were prepared with different contents of hot-air dried LLP (0%, 3%, 6%, 9%, 12%) followed by analysis of chemical properties, moisture contents, color, mechanical quality characteristics, amylograph, and sensory tests. Chemical analysis showed that hot-air dried LLP consisted of 11.41% water, 8.34% crude protein, 1.90% crude fat, 7.74% crude ash, and 16.95% crude fiber, with $^{\circ}Brix$ of 2.07, and pH of 5.78. Moisture contents of samples ranged from 52.22 to 50.06%. L-value decreased with addition of hot-air dried LLP, whereas a-value increased with increasing amount of hot-air dried LLP, and no significant differences were observed regarding b-value. In the mechanical evaluation of physical properties, hardness deceased with increasing amount of hot-air dried LLP. The starting temperature amylograph of Jeolpyun was higher in samples with hot-air dried LLP than those without hot-air dried LLP. Set back was slower with increasing amount of hot-air dried LLP, an increasing amount of hot-air dried LLP made set back of Jeolpyun slower. In the sensory test, Jeolpyun with 6% hot-air dried LLP was the most preferred with less bitterness and proper softness, moisture and chewiness. Therefore, addition of 6% hot-air dried LLP to Jeolpyun made with rice flour showed the best overall preference. Based on the results of this experiment, samples with hot-air dried LLP showed slower hardening than those without hot-air dried LLP in textural changes during storage, and Jeolpyun with 6% hot-air dried LLP is expected to increase quality and preference of Jeolpyun.

An Investigation on the Microstructure Evolution and Tensile Property in the Weld Heat-Affected Zone of Austenitic FeMnAlC Lightweight Steels (오스테나이트계 FeMnAlC 경량철강의 용접열영향부 미세조직 변화 및 인장특성에 관한 연구)

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • IMicrostructure evolution and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-30Mn-9Al-0.9C lightweight steels were investigated. Five alloys with different V and Nb content were prepared by vacuum induction melting and hot rolling process. The HAZ samples were simulated by a Gleeble simulator with welding condition of 300kJ/cm heat input and HAZ peak temperatures of $1150^{\circ}C$ and $1250^{\circ}C$. Microstructures of base steels and HAZ samples were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their mechanical properties were evaluated by tensile tests. The addition of V and Nb formed fine V and/or Nb-rich carbides, and these carbides increased tensile and yield strength of base steels by grain refinement and precipitation hardening. During thermal cycle for HAZ simulation, the grain growth occurred and the ordered carbide (${\kappa}-carbide$) formed in the HAZs. The yield strength of HAZ samples (HAZ 1) simulated in $1150^{\circ}C$ peak temperature was higher as compared to the base steel due to the formation of ${\kappa}-carbide$, while the yield strength of the HAZ samples (HAZ 2) simulated in $1250^{\circ}C$ decreased as compared to HAZ 1 due to the excessive grain growth.

Properties of Fresh Polymer Concretes Using Mixed Waste Plastics (복합 재질 폐플라스틱을 재활용한 폴리머콘크리트의 경화 전 성질)

  • Joo, Myung-Ki;Lee, Youn-Su;Kim, Moon-Chan;Kim, Youn-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.117-124
    • /
    • 2006
  • The effects of binder content and recycling mixed waste plastics(PA) content on the workability, work life and hardening shrinkage of fresh polymer concrete using mixed waste plastics are examined. As a result, the workability of the polymer concretes using mixed waste plastics tend to improve with increasing binder content, PA content and filler content. The work life of the polymer concretes using mixed waste plastics is shortened with an increase in the initiator content and curing temperature. The length change of the polymer concretes using mixed waste plastics tend to increased with Increasing binder content and PA content. The result of the present research is expected to make a contribution to the recycling of final mixed waste plastics and the continuing efforts for the development of use of the recycled products are thought to expand the horizon for the recycling of the final mixed waste plastics.

A Fundamental study on the Characteristics of Zeolite Cement Mortar (제올라이트 시멘트 모르타르의 재료적 특성에 관한 기초 연구)

  • Jo, Byung-Wan;Kang, Suk-Won;Park, Seung-Kook;Choi, Ji-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.203-209
    • /
    • 2011
  • The cement industry is expected to face a major set-back in the near future due to its large energy consumption and $CO_2$ production, causing global warming. In order to overcome these environmental problems, this research has bee carried out to find a cement substitute material. One possible cement substitute material is Zeolite cement. In this study, the materialistic characteristics of Zeolite cement mortar were evaluated. Natural Zeolite cement mortar was prepared using alkali activation (NaOH) instead of water ($H_2O$) to determine achievable strength and appropriate mixing ratio. Based on the mixing ratio, functional material was added to alkali active agent to harden Zeolite mortar to develop a highly functional construction material. The study result showed that pure Zeolite cement mortar achieved compressive strength of 42 MPa in 7 days depending on the mixing amount of alkaline catalyst and the hardening temperature, showing high efficiency and possibility as a new construction material.

A Study on the Development of Ship's Stern Tube Sealing System(I) -Based on Lip Seals- (선미관 밀봉장치 개발에 관한 연구 (I) - 맆 시일을 중심으로-)

  • 김영식;전효중;왕지석;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.29-45
    • /
    • 1991
  • Lip type stern tube sealing systems have used in almost all the middle or large ships which are being constructed in these days. It seems that the pressure fluctuation of the seal ring interspace, the cross-section profile and the materials quality of the seal rings have great effects on the sealing fuction of this sealing system. In this paper, the mechanical movement of lip seal ring which plays the most important role in stern tube sealing system and the possibility of leakage caused by pressure fluctuation are studied by theory and experiment. Using the finite element method for the axi-symetric object which receives the torsional load, the displacement and stress analysis of the seal rings, and also the possibility of crack occurance is checked by theoretical analysis. If the force which seal ring lip periphery receives is too small, there will be the possibility of leakage caused by the pressure fluctuation of the seal ring interspace, and if this force is too large, the frictional force between the seal ring and the liner will become problematical. The possibility of leakage caused by hardening of seal ring materials and creep phenomena of tested seal rings are also examined. The trial seal rings were designed and manufactured using the program of displacement and stress analysis developed in this study and the experimental apparatus to test the trial seal rings was also designed and manufactured. This trial seal rings were fitted in the experimental apparatus which was made in the same form as an actual stern tube. The one side of this apparatus was filled with sea water and the other side of it was filled with the lubricating oil. The leakage of oil and sea water was checked and the temperature was measured, rotating the propeller shaft at the constant velocity by D.C. motor. It was proved that the trial seal rings made in Viton rubber functioned excellenty but the trial seal rings made in N.B.R. rubber had problem in its durability.

  • PDF

Metallic Structure of Iron Relics of Chosun Dynasty Excavated from Gangsun Tower, Chengpyeong Temple (청평사 강선루 출토 조선시대 철제유물의 금속조직에 대하여)

  • Kim, S. K.;Lee, C. H.
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.57-64
    • /
    • 2005
  • In the course of examining the micro structure of Iron chisel and Iron arrowhead, a relics of the 16th or 17th of Chosun Dynasty unearthed at near Gangsun-tower, Chengpyeong temple. Collected un-eroded samples from the relics were looked into the metallic structure through optical metallography. Non-metallic inclusions were-analysed by SEM and EDS. The micro structure examination and SEM-SDS analysis revealed that Iron chisel and Iron arrowhead had been produced from the sponge iron close to pure iron made by low temperature reducing in a solid and then the surface carbon content was increased by carburizing treatment. It was also found that Iron chisel had been hardened through the repetitive processes of quench hardening and heat treatment, after increasing carbon content to a certain level. Up to now, there have been a number of studies in the domestic academia which were studied mainly on the structure of metallic relics in the period of the Three Kingdoms or before. Although this research was limited in type and number of the relics, it turned out to be interesting in that it revealed the 16th or 17th century way of processing iron, even in fragments. It is thought to be fruitful that iron had been made even in the Chosun Dynasty from the sponge iron.

  • PDF

A Study on Adsorption of Heavy Metal Ions Using Water-soluble Chitosan Derivative (수용성 Chitosan 유도체를 이용한 중금속 이온 흡착에 관한 연구)

  • Lee, Kwang-Il;Kwak, Chun-Geun;Kim, Young-Ju;Jang, Buyng-Man;Kim, Sang-Ho;Lee, Ki-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 1996
  • Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. We have synthesized the water-soluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of water-soluble chitosan with carbon disulfide in the presence of alkali metal hydroxide. To elucidate this natural polymer capacity of adsorbing heavy metal ions, we have performed adsorption experiments using the water-soluble chitosan derivative various average molecular weight and of different percent contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from water-soluble chitosan of average molecular weight ranging $9,000{\sim}120,000$ was shown to have the highest capacity of adsorbing heavy metal ions. On the whole, adsorbing efficiency was increased as the reaction time goes longer and also increased as the reaction temperture goes higer in temperture range of $15^{\circ}C{\sim}45^{\circ}C$. The adsorption capacity at various pH, however, was appeared to vary depending on the heavy metal ions studied Judging from these finding, water-soluble N-dithiocarboxy chitosan sodium salt, a derivative of a biodegradable nature polymer, is believed to be a potential adsorbent for heavy metal ions since it not only is shown to lower the concentration of heavy metal ions to below the drainage quality standard, but also it would not cause acidification and hardening of soil which is one of the detrimental effects of synthetic macromolecular adsorbents present.

Microstructure investigation and component analysis of iron weapons found at Hadong-gun, Kyungnam Province (경남 하동군 발견 철제무구류의 금속조직 조사 및 성분분석)

  • Yu, Jae-Eun;Go, Hyeoung-Sun;Hwong, Jin-Ju
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.177-206
    • /
    • 2000
  • In the study of iron artifacts, microstructure investigation is an indispensable step to find out the manufacturing method and skill. The iron weapons that we have excavated and investigated at the ruins of Gohyun Castle site, Hadong-gun, Kyungnam Province are traced to the era of Choson Dynasty. By sampling specimens of some artifacts, we have made microstructure investigation and component analysis of them. For microstructure investigation we used metallographic microscopes, and for component analysis we used the methods of C/S analysis and Inductively coupled plasma emission spectrometry (ICP) analysis which is designed to verify components and contenets of a very small amount elememt. Microstructure of the artifacts is mainly divided into three parts. Inner part is Widmanstatten, a typical overheated structure, upon which we can see another part with fine grains and with extremely small quantities of carbon. And on the surface, there is a carbonized part. When the shape is formed through forging process at a high temperature the carbon content of the surface is getting down and the grains come to be finer. Next, carbonizing process is to be done for hardening the surface, which is followed by cooling process. Cooling rates seem to be different from artifacts to artifacts. All artifacts have clearly distinguishable grain boundaries in their unique structure. Since this kind of structure is rarely found, it seems to offer a clue to find out the manufacturing method. The outcome of component analysis is almost the same with that of microstructure investigation. As is demonstrated by C/S analysis, carbon content is 0.39-1.24% and sulfur is contained 0.0005-0.010%.

  • PDF

BRAZING CHARACTERISTICS BETWEEN CEMENTED CARBIDES AND STEEL USED BY AG-IN BRAZING FILLER

  • Nakamura, Mitsuru;Itoh, Eiji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.551-554
    • /
    • 2002
  • As a general rule, the brazing process between cemented carbides and steel used by Silver (Ag) type brazing filler. The composition of Ag type filler were used Ag-Cu-Zn-Cd type filler mainly. But, the demand of Cadmium (Cd)-free in Ag type filler was raised recently. The reason why Cd-free in Ag brazing filler were occupied to vaporize as a CdO$_2$ when brazing process, because of Cd element was almost low boiling point of all Ag type filler elements. And, CdO$_2$ was a very harmful element for the human body. This experiment was developed Cd-freeing on Ag type filler that was used Indium (In) instead of Cd element. In this experiment, there were changed from 0 to 5% In addition in Ag brazing filler and investigated to most effective percentage of Indium. As a result, the change of In addition instead of Cd, there was a very useful element and obtained same property only 3% In added specimens compared to Cd 19% added specimens. These specimens were obtained same or more deflective strength. In this case, there were obtained 70 MPa over strength and wide brazing temperature range 650-800 C. A factor of deflective strength were influenced by composition and the shape of $\beta$ phase and between $\beta$ phase and cemented carbides interface. Indium element presented as $\alpha$ phase and non-effective factor directly, but it's occupied to solid solution hardening as a phase. $\beta$ phase were composed 84-94% Cu-Ni-Zn elements mainly. Especially, the presence of Ni element in interface was a very important factor. Influence of condensed Ni element in interface layer was increased the ductility and strength of brazing layer. Therefore, these 3% In added Ag type filler were caused to obtain a high brazing strength.

  • PDF

A Case Study of Developing Rapid-Hardening Ultra-Low Temperature Adhesives by Mixture Design and Multiple Response Optimization (혼합물 실험계획과 다수 반응변수 최적화를 통한 속경화 초저온접착제 개발 사례)

  • Byun, Jai-Hyun;Seo, Pan Seok;Shin, Ji Eun;Lee, Lyun Gyu;Yeom, Ji Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.757-768
    • /
    • 2014
  • Purpose: In this paper we present a case study of developing fast curing adhesives for insulation material of LNG carriers using an extreme vertices design with four mixture components. Three material properties are considered - shear strength, viscosity, and tensile strength. In the optimization experiment, we used hardness instead of tensile strength due to shortage of specimens. Methods: We employ four-factor extreme vertices design with 19 runs and desirability function approach for simultaneously optimizing three responses. After selecting optimal condition of the mixture components, we do confirmation experiments to verify the reproducibility of the optimal condition under manufacturing circumstance. Results: Simultaneous optimal condition for the three responses, that is, shear strength, viscosity, and harness is obtained. At the optimal condition, confirmation experiments are executed in manufacturing circumstance. The variation for the shear strength is not satisfactory, which is due to the variation of the humidity. Conclusion: At the optimal condition three material properties are satisfactory. To reduce the variability for the shear strength, robust design is needed.