• Title/Summary/Keyword: Temperature hardening

Search Result 624, Processing Time 0.026 seconds

Mechanical Properties According to Curing Conditions of Mortar Using CO2 Hardening Cement (CO2 반응경화 시멘트 활용 모르타르의 양생조건에 따른 역학적 특성)

  • Ji-Seok Seo;Sun-Gyu Tae;Jun Lee;Bong-Chun Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.307-315
    • /
    • 2023
  • In this study, mortar test specimens were produced by varying the mixing ratio of CO2 reaction hardening cement (CSC) and general cement (OPC), and the mechanical and carbonation characteristics were evaluated by controlling the primary curing temperature and secondary curing CO2 pressure. Under all curing conditions, it was observed that the higher the CSC ratio in the binder, the lower the mechanical properties. Specifically, a first curing temperature of 60 ℃ yielded higher mechanical properties compared to the case of 20 ℃, and a greater carbonation penetration depth was also observed. At a first curing temperature of 60 ℃, it was noted that the curing pressure and bending strength during the second CO2 curing were inversely proportional, while the compressive strength showed a proportional relationship. This phenomenon is believed to be due to excessive carbonation, which reduces mechanical properties, and the fact that flexural strength is more sensitive to these properties compared to compressive strength. However, based on the evaluation of the limited curing conditions, it is evident that future test conditions need to be expanded and reviewed more thoroughly.

A Study on the Convection Heat Transfer Coefficient in Concrete at Early Ages (초기재령 콘크리트의 외기대류계수에 관한 연구)

  • 김진근;전상은;양은익;송영철;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.151-156
    • /
    • 1997
  • The setting and hardening of concrete is accompanied by nonlinear temperature distribution caused by developing heat of cement hydration. expecially at early ages, nonlinear temperature distribution has a large influence n the crack evaluation. So the need to predict the exact temperature history in concrete has led to the examination thermal properties. In this study, the convection heat transfer coefficient is experimentally investigated which is one of the thermal properties in concrete. Furthermore, the result of the experiment is compared with those of analysis by the program which is developed in KAIST. As a result of comparison, the analytical results are in good approximation with experimental data.

  • PDF

Experimental Study Mixing, Placing and Hydration Temperature of 1400kg/$\textrm{cm}^2$ Ultra High-Strength Concrete (1400kg/$\textrm{cm}^2$ 초고강도 콘크리트의 배합, 타설 및 수화온도 이력에 관한 연구)

  • 윤영수;장일영;원종필;최응규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.430-435
    • /
    • 1997
  • This paper presents the material properties and production of 1400kg/$\textrm{cm}^2$ ultra high-strength concrete in consideration of the history of hydration temperature for the practical utilization. A series of laboratory tests were conducted to optimize the mix proportion and then the full-scall mock up tests were performed to investigate the practicability. The thermal sensors were installed prior to concrete casting into the walls and columns, to measure the hydration temperature during the hardening process, which is inevitable to select the most appropriate curing scheme.

  • PDF

Thermal Deformation Analysis of Exhaust Manifold for Turbo Diesel Engine in Consideration of Flange Design (터보 디젤 엔진용 배기매니폴드의 열변형 해석)

  • Kim, Beom-Keun;Lee, Eun-Hyun;Choi, Bok-Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.338-343
    • /
    • 2007
  • Thermal deformation of cast iron exhaust manifold for turbo diesel engine is investigated by finite element analysis (FEA). The FE model included the temperature dependent material properties as well as the interactions between exhaust manifold, cylinder head and fasteners. It also considers the sliding behavior of the flanges of exhaust manifold on cylinder head when either expansion or contraction of the exhaust manifold exceeds the fastener pretension. The result of analysis revealed that remarkable thermal deformation along the longitudinal direction. Compressive plastic deformation at high temperature remained tensile stress in manifold and resulted in longitudinal contraction at ambient temperature. The amount of contraction at each fastener position was predicted and compared with experimental results. Analysis results revealed that the model predicted deformation qualitatively, but more elaborated cyclic hardening behavior would be necessary to predict the deformation quantitatively.

Precipitation and Recrystallization of V-Microalloyed Steel during Hot Deformation (V 첨가강의 고온변형시 석출 및 재결정에 관한 연구)

  • 조상현;김성일;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.48-54
    • /
    • 1996
  • The continuous deformation , multistage deformation and stress relaxation were carried out to investigate the strain induced procipitation by torsion tests in the range of 1000∼800$^{\circ}C$, 0.05/sec∼5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests and the distribution of percipitates increased at higher strain rate and the mean size of precipitates was found to be about 50nm. The precipitation starting time decreased with increasing strain rate from 0.05/sec to 5 /sec and pre-strain. The effect of deformation conditions on the no-recrystallization temperature(Tnr) was determined in the multistage deformation with declining temerature. The Tnr decreased with increasing strain and strain rae. In the controlled rolling, grain refinement and precpitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Wear Mechanism of Inconel Alloys in Room Temperature Water (물분위기에서의 인코넬 합금의 마멸기구)

  • 이영호;김인섭
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.103-108
    • /
    • 2001
  • Wear test has been performed to evaluate the wear mechanism of Inconel alloys against ferritic stainless steels in room temperature water. By means of scanning electron microscopy (SEM), the worn surface and microstructure of subsurface layer have been examined. The wear at steady state conditions result in the formation of 5∼7${\mu}$m thick layers with fragmented microstructure. The thickness of these layers seems to depend on the ability of work hardening and deformation accommodation at the contact areas during wear. Therefore, in room temperature water, the wear rate is closely related with the wear resistance of these fragment microstructure which are generated after severe subsurface deformation.

  • PDF

A Study on the Ageing Behavior of Cu-bearing HSLA steels by thermal analysis (열분석법에 의한 Cu를 함유한 HSLA강의 시효 거동에 관한 연구)

  • 박태원;심인옥;김영우;강정윤
    • Proceedings of the KWS Conference
    • /
    • 1994.05a
    • /
    • pp.44-47
    • /
    • 1994
  • The ageing behavior of Cu-bearing HSLA steels was studied by using Differential scanning calorimetry(DSC), Transmission electron microscopy and hardness tester. Two heat evolution peaks were observed during DSC scans over the temperature range of 25~590$^{\circ}C$ at a heating rate of 5$^{\circ}C$/min. The peaks appeared in low (241∼319$^{\circ}C$ : HSLA-A, 224∼310$^{\circ}C$ : HSLA-B) and high temperature (514∼590$^{\circ}C$ : HSLA-A, 451∼558$^{\circ}C$ : HSLA-B) are attributed to the formation of coherent Cu-clusters and noncoherent $\varepsilon$-Cu phase, respectively. It was confirmed that as ageing proceeds, the coherent bcc Cu-clusters transform to noncoherent fcc $\varepsilon$-Cu phase. In the case of the ageing to peak hardness at 300$^{\circ}C$ and 400$^{\circ}C$, the coherent Cu-clusters contributed to the hardening. As ageing time and temperature increase over peak hardness, noncoherent $\varepsilon$-Cu are formed and hardness decreases.

  • PDF

Combined Heat Treating characteristics of Hot Work Tool Steel (열간금형 공구강의 복합열처리 특성에 관한 연구)

  • Kim, Y.H.;Kim, D.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.315-323
    • /
    • 1998
  • This study has been conducted to develope the combined heat treating technique of gas carburising - gas nitriding and gas carburising to improve the hot working performance of type H3 hot work tool steel. Case depth and carbrides coarsening were increased with increasing carburising temperature and time, respectively. Surface hardness showed decreasing tendency with increasing 2nd tempering temperature after carburising treatment. After carburising, 2nd treatment at 500 to 600 was chosen according to a hardness demand of final product. High temperature tempering resistance showed more excellent quality during such carburising-nitriding or carburising than complex treatment as after conventional hardening.

  • PDF

A study on the Al cementation and formation of corrosion-resisting, hardening layer on the steel surface by the arc spray method (아크 용사법에 의한 강재표면에의 Aluminum침수 및 내식, 경화성 피막형성에 관한 연구)

  • 김영식;배차헌;오재환;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.64-77
    • /
    • 1989
  • In this study, the experiments were carried out for the purpose of establishment of aluminium cementation to steel surface by diffusible heat treatment after making the coated film onto the substrate by arc spray method. Also, the microstructure and mechanical properties of the cementation layer produced by this study were inspected for various heat treatment and spraying conditions. Main results obtained are as follow ; 1. The coating film characteristics which have excellent errosion-resistance, high temperature oxidation-resistance are obtained by aluminium penetration heat treatment after making the sprayed aluminum coating film onto the steel substrate. 2. Aluminium diffusion penetration takes place at higher temperature than 660.deg.C, and the more heat treatment time and the higher heat treatment temperature adopted, the deeper diffusion layer obtained. 3. Insert gas arc spraying using argon gas as the carrier gas higher improvement of mechanical property than that of compressed air environment. 4. The coating film characteristics appeared to be improvement of adhesive property, porosity plugging effect by heat treatment in air environment.

  • PDF

The Fundamental Study on Thermal Conductivity with Variation Density of Light Weight Foam Concrete and Iron plate structure (경량기포콘크리트의 밀도변화에 따른 열전도 특성에 관한 기초적 연구)

  • Choi, Hun-Gug;Jung, Eun-Hye;Kang, Cheol;Lee, Eun-Young;Kim, Dae-Yeon;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.849-852
    • /
    • 2006
  • The lightweight foamed concrete is superior to properties of insulation and light-weight because it is included in many inner pore. So, lightweight foamed concrete used to construction field that need to property of insulation. The property of insulation of lightweight foamed concrete is varied with density. Also, Density is varied with hardening matrix and pore rate. The purpose of the experiment is to know thermal properties of specimen according to the change of density when heating the specimen. As a result of this experiment, the higher density, the lower temperature of mold. this tendency isn't same as ordinary lightweight foamed concrete, and then density 0.9 is expressed most low temperature result also the discontinuity of shape of mold was efficient for the prevention of the temperature rise.

  • PDF