• Title/Summary/Keyword: Temperature cycling

Search Result 321, Processing Time 0.027 seconds

The Effects of Temperature Cycling on the Production of Aflatoxin by Aspergillus parasiticus R-716 (Aspergillus parasiticus R-716의 aflatoxin생합성에 미치는 temperature cycling의 영향)

  • 정영철;성낙계;이용욱;정덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.1 no.2
    • /
    • pp.157-162
    • /
    • 1986
  • ABSTRACT-This study was designed to observe the effects of temperature cycling on the aflatoxin production by Aspergillus parasiticus R-716 in modified SLS medium. Temperature cycling resulted in total aflatoxin production more than did constant incubation at either $28^{\circ}C$, which was considered to be optimum for aflatoxin production, or $17.5^{\circ}C$, which had the same total thermal input as the temperature cycling. The aflatoxin biosynthesis correlated with the color intensity of media, but was controversal with lipid biosynthesis, and aflatoxin concentration is not related to changes in the fatty acid compositions of used strain.strain.

  • PDF

Influence of Temperature Cycling on the Production of Aflatoxin in Solid Media (固體培地에서 Aflatoxin생성에 미치는 Temperature Cycling의 影響)

  • 정덕화;정영철;성낙개
    • Journal of Environmental Health Sciences
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 1986
  • This study was designed to observe the effect of temperature cycling on the production of aflatoxin by Aspergillus parasiticus R-716 in rice, barley, peanut and soybean. In those media, temperature cycling resulted in more total aflatoxin production by the strain of R-716 than constant incubation at $28{\circ}$C and natural condition did. Especially, high level of total aflatoxin ($1826{\mu}g$/30g) in rice medium at temperature cycling was produced. The intensity of yellow color of chloroform extracts correlated with the concentration of aflatoxin, and the ratio of aflatoxin $B_1$ to aflatoxin $B_2, G_1, G_2$ is lower at temperature cycling condition than at $28{\circ}$C.

  • PDF

Dimensional Responses of Wood Under Cyclical Changing Temperature at Constant Relative Humidity

  • Yang, Tiantian;Ma, Erni;Shi, Yi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.539-547
    • /
    • 2015
  • To investigate dimensional responses of wood under dynamic temperature condition, poplar (populous euramericana Cv.) specimens, 20 mm in radial (R) and tangential (T) directions with two thicknesses of 4 and 10 mm along the grain, were exposed to cyclic temperature changes in square wave between $25^{\circ}C$ and $40^{\circ}C$ at 60% relative humidity (RH) for three different cycling periods of 6 h, 12 h and 24 h. R and T dimensional changes measured during the cycling gave the following results: 1) Transverse dimensional changes of the specimens were generally square but at an opposite phase and lagged behind the imposed temperature changes. The phase lag was inversely correlated with cycling period, but positively related to specimen thickness, while the response amplitude was directly proportional to cycling period, but in a negative correlation with specimen thickness. 2) The specimens showed swelling hysteresis behavior. The heat shrinkage coefficient (HSC) became greater as cycling period increased or specimen thickness decreased. 3) Dimensional changes of the specimens produced deformation accumulation during repeated adsorption and desorption. The deformation accumulating ratio decreased with an increase in cycling period and specimen thickness. 4) Wood suffered 1.5 times as many dimensional changes per unit temperature variation as per unit humidity variation, and this deformation behaved even more seriously under static condition.

Effect of Temperature on the Deterioration of Graphite-Based Negative Electrodes during the Prolonged Cycling of Li-ion Batteries

  • Yang, Jin Hyeok;Hwang, Seong Ju;Chun, Seung Kyu;Kim, Ki Jae
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.208-212
    • /
    • 2022
  • In this paper, we report the effects of temperature on the deterioration of graphite-based negative electrodes during the longterm cycling of lithium-ion batteries (LIBs). After cycling 75 Ah pouch-type LIB full cells at temperatures of 45℃ (45-Cell) and 25℃ (25-Cell) until their end of life, we expected to observe changes in the negative electrode according to the temperature. The thickness of the negative electrode of the cell was greater after cycling; that of the electrode of 45-Cell (144 ㎛) was greater than that of the electrode of 25-Cell (109 ㎛). Cross-sectional scanning electron microscopy analysis confirmed that by-products caused this increase in the thickness of the negative electrode. The by-products that formed on the surface of the negative electrode during cycling increased the surface resistance and decreased the electrical conductivity. Voltage profiles showed that the negative electrode of 25-Cell exhibited an 84.7% retention of the initial capacity, whereas that of 45-Cell showed only a 70.3% retention. The results of this study are expected to be relevant to future analyses of the deterioration characteristics of the negative electrode and battery deterioration mechanisms, and are also expected to provide basic data for advanced battery design.

Effect of Lowered and Cycled Storage Temperature of Rice Cooker (낮고 반복된 저장 온도의 밥솥에서 밥의 색 및 미생물 성장에 미치는 효과)

  • Na, Hye-Jung;Ryu, Dong-Kul;Lee, Yun-Gi;Oh, Yong-Taek;An, Gil-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.958-963
    • /
    • 2009
  • To improve the quality of boiled rice after storage in rice cookers, temperature was controlled at a lowered condition ($45{\sim}65^{\circ}C$ repeated temperature cycling), compared to the present commercial rice cookers ($75^{\circ}C$). The effect of lowered temperature cycling on the microbial growth, color of rice, and reducing sugar production was measured. The bacteria Bacillus cereus and B. subtilis were killed at $75^{\circ}C$ and $45{\sim}65^{\circ}C$ cycling. The temperature cycling at $45{\sim}65^{\circ}C$ prevented an increase in colony forming unit of E. coli more than the steady temperature at $75^{\circ}C$. Browning during storage was significantly decreased at $45{\sim}65^{\circ}C$ cycling, compared to $75^{\circ}C$. The yellowness increase (${\Delta}b$ value of CIE parameters of the colorimeter) after the 3-day storage was 2.18 at $45{\sim}65^{\circ}C$ cycling whereas 9.12 at $75^{\circ}C$. Reducing sugar was not produced at $75^{\circ}C$ and $45{\sim}65^{\circ}C$ cycling but produced at $30^{\circ}C$ because of the microbial growth. In conclusion, the temperature cycling at $45{\sim}65^{\circ}C$ can improve the quality of stored boiled rice by decreasing the browning and inhibiting the microbial growth.

Cryogenic Thermal Cycling Test on IGRINS cross-disperser VPH Grating

  • Jeong, Hyeon-Ju;Lim, Ju-Hee;Lee, Sung-Hoo;Deen, Casey;Pak, Soo-Jong;Yuk, In-Soo;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.156-156
    • /
    • 2011
  • VPH (Volume Phase Hologram) grating is one of the transmission gratings and is known as its remarkable efficiency (>90%). It has two different densities of gelatins causing interference patterns. The VPH grating is favored in many astronomical instruments these days and also IGRINS, which is up coming near infrared high-resolution spectroscope expected to see the first light next year, uses the VPH grating as its cross-disperser. The infrared astronomical instruments operate at cryogenic temperature (~100K) in order to cut down thermal noise and the optical components of IGIRNS will be operated at 130K. The VPH grating is sandwiched in between fused silica or glass and glued together using optical adhesive. IGRINS is expected to go through 50 times of thermal cycling in 10 years including the performance test and this research is to check whether the physical characteristic such as the adhesion or dichromatic gelatin does not break and change from the several cryogenic thermal cycling. The two identical test gratings provided from Kaiser Optical System, Inc. are used in this test. One VPH grating is cooled down to 100K for 2 hours with maximum dT/dt = 5 and warmed up to the room temperature and another grating is kept stored in the room temperature and used as a control sample. In order to check the change, we inspected the grating with eyes and checked its efficiency and transmission at the room temperature every 10 cycling. From the 40 times of cryogenic temperature cool down cycling, the VPH grating showed no signs of change within the error compared to the control sample. We concluded the VPH grating is durable through several cryogenic thermal cycling.

  • PDF

A Comparative Study of the Fatigue Behavior of SnAgCu and SnPb Solder Joints (무연솔더(SnAgCu)와 유연솔더(SnPb)의 피로 수명 비교 연구)

  • Kim, Il-Ho;Park, Tae-Sang;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1856-1863
    • /
    • 2004
  • In the last 50 years, lead-contained solder materials have been the most popular interconnect materials used in the electronics industry. Recently, lead-free solders are about to replace lead-contained solders for preventing environmental pollutions. However, the reliability of lead-free solders is not yet satisfactory. Several researchers reported that lead-contained solders have a good fatigue property. The others published that the lead-free solders have a longer thermal fatigue life. In this paper, the reason for the contradictory results published on the estimation of fatigue life of lead-free solder is investigated. In the present study, fatigue behavior of 63Sn37Pb, and two types of lead-free solder joints were compared using pseudo-power cycling testing method, which provides more realistic load cycling than chamber cycling method does. Pseudo-power cycling test was performed in various temperature ranges to evaluating the shear strain effect. A nonlinear finite element model was used to simulate the thermally induced visco-plastic deformation of solder ball joint in BGA packages. It was found that lead-free solder joints have a good fatigue property in the small temperature range condition. That condition induce small strain amplitude. However in the large temperature range condition, lead-contained solder joints have a longer fatigue life.

Analysis of the Causes of Cracks in Rocket Propellant in Thermal Cycling Test (로켓탄 추진기관 온도반복시험 균열 원인분석)

  • Bak, Jin Man;Park, Soon Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.735-749
    • /
    • 2023
  • Purpose: The purpose of this study is to derive solutions and prevent similar cases from occurring by analyzing the causes of cracks found in temperature cycling tests of rocket motor. Methods: By combining the results of the current state confirmation test, non-destructive test, domestic and foreign rocket motor comparison test, cutting test, and adhesion test according to the number of times to apply mold release agent, a Cause and Effect Diagram analysis was performed to derive the cause of cracks. Results: Through this study, 26 factors that could cause cracking in rocket motors during temperature cycling tests were identified. Through various additional test results, a total of five causes were identified, including chemical and structural design of the joint between the propellant and stress relief insert, omission of procedure in the manufacturing procedures, natural aging due to temperature, and load accumulation due to temperature changes. The fundamental cause was confirmed to be insufficient consideration of the release properties of the propellant and stress relief insert. Conclusion: During the design process, it was confirmed that this could be solved by structurally or chemically designing the insert so that it does not combine with the propellant, or by applying a mold release agent during the manufacturing process.

The AC impedance of $LiM_{y}Mn_{2-y}O_{4}$cathode material by charge and discharge temperature (충방전 온도에 따른 $LiM_{y}Mn_{2-y}O_{4}$정극 활물질의 임피던스 특성 분석)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.351-354
    • /
    • 2000
  • AC impedance of LiM $n_2$ $O_4$ and LiM $g_{0.1}$M $n_{1.9}$ $O_4$ samples have been studied at various temperature with charge-discharge test. AC impedance of LiM $n_2$ $O_4$ measured at -2$0^{\circ}C$, room temperature and 5$0^{\circ}C$ revealed that initial impedance before charge-discharge test was gradually decreased and become small by becoming law temperature. It indicates that the Li ion diffusion and the transfer resistance of the cathode are related to the temperature of cycling. Impedance at high temperature was suddenly increased because Mn dissolution and decomposition of electrolyte had been increased during cycling, compared to impedance at low temperature. Therefore, charge-discharge capacity was suddenly decreased at high but was slowly at low. In LiM $g_{0.1}$M $n_{1.9}$ $O_4$, impedance and capacity were stability at room temperature than there at 5$0^{\circ}C$, too. Initial impedance at 5$0^{\circ}C$ before charge-discharge test was small and impedance was suddenly increased during cycling than that at room temperature.ure.ure.

  • PDF

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON/POLYMER COMPOSITES (탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • Yeh, Byung-Hahn;Won, Yong-Gu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.38-42
    • /
    • 2002
  • An apparatus was developed to repetitively apply a $-196^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen ($LN_2$) 400 times. Ply-by-ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at $120^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies fellowed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5%.

  • PDF