• 제목/요약/키워드: Temperature cycle

검색결과 2,566건 처리시간 0.026초

저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구 (Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat)

  • 김경훈;김세웅;고형종
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

3압 복합 발전 플랜트 사이클에 대한 성능해석 (Performance Analysis of a 3 Pressured Combined Cycle Power Plant)

  • Kim, S. Y.;K. S. Oh;Park, B. C.
    • 한국추진공학회지
    • /
    • 제2권2호
    • /
    • pp.74-82
    • /
    • 1998
  • 복합발전 사이클은 가스터빈이나 스팀터빈으로부터의 출력을 이용하여 전개를 생산하기 위한 발전기를 구동시키고 배영회수기로부터 나온 증기를 스틸터빈에서 팽창시킴으로서 부가적인 동력을 얻는 장치를 가리킨다. 보통 가스터빈 배기로 부터의 온도는 $400{\sim}650^{\circ}C$정도로서 배열회수기에서 효과적으로 스팀을 생산할 수 있는 수준의 온도이다. 복합 사이클은 일반적으로 상부사이클과 하부사이클로 구분하는데 대부분의 열에너지 공급이 이루어지는 상부사이클을 브레이돈사이클 이라하며 브레이돈사이클에서 소비되는 에너지는 보다 낮은 온도 수준인 하부사이클에서 회수된다. 이러한 복합사이클은 최근 들어 더욱 보편적으로 적용되고 있는데 그 이유는 첫째, 가스터빈이나 스팀터빈이 독자적으로도 충분히 기술적인 검증을 받은 열기관으로서 초기에 비해 개발비가 저렴해졌다는 데 있고, 둘째, 작동유체인 공기가 $1000^{\circ}C$ 이상에서도 별다른 문제없이 적용될 수 있는 안전한 유체이고 비용이 전혀 들지 않는다는 점이다. 그 뿐 아니라 스팀터빈에 사용되는 물도 중저온에서 매우 저가로 공급할 수 있고 쉽게 공급이 가능하다는 이점으로 하부사이클에의 적용이 매우 양호하다는 점이다. 최근 소재기술의 개발에 따른 터빈입구온도의 향상은 이러한 복합발전 사이클의 기술적, 경제적 이점을 더욱 강화시켜 주고 있다. 본 연구에서는 3압에 의한 복합사이클에 대한 성능해석을 통하여 상부사이클이 전체 복합발전 성능에 미치는 영향을 조사하였으며 그 결과를 서인천 복합발전 인수 성능시험결과와 비교하였다. 본 연구결과는 현재 개념설계가 이루어지고 있는 장차 150~200MW수준의 산업용 가스터빈 개발에 중요한 방향제시를 할 수 있을 것으로 판단된다.

  • PDF

LNG 냉열을 이용하는 동력사이클 열역학 해석 (Thermodynamic Analysis of Power Generation Cycle Utilizing LNG Cold Energy)

  • 최권일;장홍일
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제1권1호
    • /
    • pp.48-55
    • /
    • 1999
  • thermodynamic cycle analysis has been performed for the power generation systems to utilize the cold energy of liquefied natural gas (LNG). The power cycle used the air or water at room temperature as a heat source and the LNG at cryogenic temperature as a heat sink. Among manypossible configurations of the cycle. the open Rankine cycle. and the closed Brayton cycle, and the closed Rankine cycle are selected for the basic analysis because of their practical importance. The power output per unit mass of LNG has been analytically calculated for various design parameters such as the pressure ratio. the mass flow rate. the adiabatic efficiency. the heat exchanger effectiveness. or the working fluid. The optimal conditions for the parameters are presented to maximize the power output and the design considerations are discussed. It is concluded that the open Rankine cycle is the most recormmendable both in thermodynamic efficency and in practice.

  • PDF

순산소 연소 기본 사이클의 작동조건 변화에 따른 성능해석 (Influence of Operating Conditions on the Performance of a Oxy-fuel Combustion Reference Cycle)

  • 박병철;손정락;김동섭;안국영;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2971-2976
    • /
    • 2008
  • Recently, there has been growing interest in the oxyfuel combustion cycle since it enables high-purity CO2 capture with high efficiency. However, the oxyfuel combustion cycle has some important issues regarding to its performance such as the requirement of water recirculation to decrease a turbine inlet temperature and proper combustion pressure to enhance cycle efficiency. The purpose of the present study is to analyze performance characteristics of the oxyfuel combustion cycle with different turbine inlet temperatures and combustion pressures. It is expected that the turbine inlet temperature improves cycle efficiency, on the other hand, the combustion pressure has specific value to display highest cycle efficiency.

  • PDF

저온 열원의 활용을 위한 흡수 발전/냉각 복합 사이클의 열적 해석 (Thermal Analysis of a Combined Absorption Cycle of Cogeneration of Power and Cooling for Use of Low Temperature Source)

  • 김경훈
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.413-420
    • /
    • 2011
  • Thermodynamic cycles using binary mixtures as working fluids offer a high potential for utilization of low-temperature heat sources. This paper presents a thermodynamic performance analysis of Goswami cycle which was recently suggested to produce power and cooling simultaneously and combines the Rankine cycle and absorption refrigeration cycle by using ammoniawater mixture as working fluid. Effects of the system parameters such as concentration of ammonia and turbine inlet pressure on the system are parametrically investigated. Results show that refrigeration capacity or thermal efficiency has an optimum value with respect to ammonia concentration as well as to turbine inlet pressure.

4행정 대형 디젤엔진의 배기 배출특성에 관한 연구 (A Study on the Emission Characteristics in 4 Stroke Large Propulsion Diesel Engine)

  • 김현규;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.38-45
    • /
    • 2001
  • Environmental protection on the ocean has been interested and nowadays the International maritime organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO technical code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

원자력을 이용한 수소생산기술 개발 동향 (Current Status of Nuclear Hydrogen Development)

  • 장종화
    • 에너지공학
    • /
    • 제15권2호
    • /
    • pp.127-137
    • /
    • 2006
  • 화학연료 사용으로 야기된 환경문제, 경제문제를 해결하기 위한 방안으로 수소경제가 추진되고 있다. 원자력을 이용한 대량수소생산은 수소경제를 뒷받침하기 위한 현실적인 방안이다. 본 논문에서는 원자력수소 생산에 사용할 초고온가스로의 특징과 개발현황, 초고온가스로로부터 발생하는 고온의 열을 이용한 수소생산방법 중 유력시 되는 기술로서 요오드-황 열화학법, 황산하이브리드법, 고온전기분해법의 기술개발 현황과 방향을 소개한다.

폐열 이용 폐쇄형 해양온도차발전 사이클의 성능 (Performance Analysis of Closed-type OTEC Cycle using Waste Heat)

  • 이호생;정동호;홍석원;김현주
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.80-84
    • /
    • 2011
  • The cycle performance of closed ocean thermal energy conversion (OTEC) system with 50 kW gross power was evaluated to obtain the basic data for the optimal design of OTEC using waste heat such as solar power, discharged heat from condenser of power plant. The basic thermodynamic model for OTEC is Rankine cycle, and the surface seawater and deep seawater were used for the heat source of evaporator and condenser, respectively. The cycle performance such as efficiency, heat exchanger capacity, etc. was analyzed on the variation of temperature increase by waste heat. The cycle efficiency increased and necessary capacity of evaporator and condenser decreased under 50kW gross power with respect to the temperature increase of working fluid. Also, when the temperature increase is about $13.5^{\circ}C$, the heat which can be used is generated. By generator with 0.9 effectiveness under the simulated condition, the cycle efficiency was improved approximately 3.0% comparing with the basic cycle.

저온 열원 발전을 위한 암모니아-물 랭킨 사이클과 칼리나 사이클의 성능특성의 비교 해석 (Comparative Performance Analysis of Ammonia-Water Rankine Cycle and Kalina Cycle for Recovery of Low-Temperature Heat Source)

  • 김경훈;배유근;정영관;김세웅
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.148-154
    • /
    • 2018
  • This paper presents a comparative analysis of thermodynamic performance of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the characteristics of the system. Results show that maximum net power can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better net power and thermal efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.

산업배열회수용 1MW급 유기랭킨 사이클 시스템 개발 (Development of 1MW Organic Rankine Cycle System for Industrial Waste Heat Recovery Put English Title Here)

  • 조한창;박흥수;이용국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.776-781
    • /
    • 2001
  • To enhance thermal efficiency of thermal facility through recovery of low and medium temperature waste heat, 1MW organic Rankine cycle system was designed and developed. The exhaust gases of $175^{\circ}C$ at two 100MW power plants in pohang steel works were selected as the representative of low and medium temperature waste heat in industrial process for the heat source of the organic Rankine cycle system. HCFC-123, a kind of harmless refrigerant, was chosen as the working fluid for Rankine cycle. The organic Rankine cycle system with selected exhaust gases and working fluid was designed and constructed. From the operation, it was confirmed that the organic Rankine cycle system is available for low and medium temperature waste heat recovery in industrial process. The optimum operating manuals, such as heat-up of hot water, turbine start-up, and the process of electric power generation, were derived. However, electric power generated was not 1MW as designed but only 670kW. It is due to deficiency of pump capacity for supply of HCFC-123. So it is necessary to increase the pump capacity or to decrease the pressure loss in pipe for more improved HCFC-123 supply.

  • PDF