• 제목/요약/키워드: Temperature cycle

검색결과 2,574건 처리시간 0.031초

내부 열교환기 부착 $CO_2-C_3H_8$용 캐스케이드 냉동시스템의 성능 특성 (Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Carbon Dioxide (R744) and Propane (R290))

  • 손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.526-533
    • /
    • 2009
  • In this paper, cycle performance analysis of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system with internal heat exchanger is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and gas cooling pressure and evaporating temperature in the propane (R290) low temperature cycle and the carbon dioxide (R744) high temperature cycle. The main results were summarized as follows : The COP of cascade refrigeration system of $CO_2-C_3H_8$ (R744-R290) increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of cascade refrigeration system increases with the increasing evaporating temperature, but decreases with the increasing gas cooling pressure. Therefore, superheating and subcooling degree, compressor efficiency, evaporating temperature and gas cooling pressure of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system have an effect on the COP of this system.

가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험 (Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates)

  • 심규호;김민기;이윤표;장선준
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.

신흡수용액을 이용한 중온수 흡수식 냉동기의 사이클 해석 (Cycle Analysis of Hot Water Driven Absorption Refrigerator with New Working Absorption Solution)

  • 권오경;윤재호;문춘근;윤정인
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1241-1248
    • /
    • 2002
  • Performance extension of the absorption refrigerator with LiBr solution is often faced to operate very close to the crystallization limit. Especially in the development of an air-cooled cycle, the crystallization of working solution in the system is a very difficult problem to overcome. This paper describes the cycle of hot water driven absorption system using a new working absorption solution instead of LiBr solution to improve the efficiency. In this study, we found out the characteristics of new working absorption solution through the cycle simulation and compared LiBr solution to evaluate. The effect of cooling water temperature, weak solution flow rate, hot water temperature and hot water flow rate were also examined. The COP is increased 22% higher in the case of LiBr+Li1+LiC1+LiNO$_3$$H_2O$, 2% LiBr+HO(CH$_2$)$_3$OH+$H_2O$ than that of LiBr solution for the same operation condition.

吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구 (A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle)

  • 박종구;양옥룡
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.77-86
    • /
    • 1992
  • 본 연구에서는 사이클은 터빈 출구로 부터 배출되는 폐열을 최대한 회수하여 얻은 증기를 연소기내에 분사시킴으로써 부가적인 압축기 및 비출력의 상향을 기할수 있다.아울러 폐열이용 암모니아 흡수기 냉동기를 구동하여 압축기 입구 온도를 낮 춤에 의해 열효율 및 비출력의 증대는 물론 대기온도 변화에 따른 기관 성능의 변동을 감소시킬 수 있다.

항공기 외장형 정찰 장비용 냉각 시스템의 성능 특성에 관한 실험적 연구 (An Experimental Study on the Performance Characteristics of Cooling System for Aircraft External Reconnaissance Stores)

  • 정대윤;이행복
    • 한국군사과학기술학회지
    • /
    • 제16권1호
    • /
    • pp.74-80
    • /
    • 2013
  • In this paper, we have proposed a vapor cycle refrigeration system as a cooling system to provide cooling air to the aircraft external reconnaissance stores. In the proposed vapor cycle system, receiver which prevents refrigerant from subcooling was eliminated and thermal expansion valve was replaced with electronic expansion valve. The vapor cycle refrigeration system is aimed to provide cooling air to the reconnaissance stores which is added to the aircraft in the form of external store. The wide temperature range of ambient air from the flight conditions can decrease the cooling performance and can make the refrigeration system unstable in low ambient temperature. Performance characteristics of the vapor cycle refrigeration system has been experimented under air conditions which is derived from the flight envelope. From the experiments, the vapor cycle refrigeration system has been proved to provide enough cooling air to the reconnaissance equipment and to be stable under all the flight conditions.

304 스테인리스강의 300℃에서 저주기 피로수명 증가 (Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel)

  • 김대환;한창희;이봉상
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.391-396
    • /
    • 2009
  • Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.

마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석 (Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System)

  • 이준희;김동섭
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

상업용 리튬 배터리의 수명 예측을 위한 고속대량충방전 데이터 정규화 선형회귀모델의 적용 (Application of Regularized Linear Regression Models Using Public Domain data for Cycle Life Prediction of Commercial Lithium-Ion Batteries)

  • 김장군;이종숙
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.592-611
    • /
    • 2021
  • In this study a rarely available high-throughput cycling data set of 124 commercial lithium iron phosphate/graphite cells cycled under fast-charging conditions, with widely varying cycle lives ranging from 150 to 2,300 cycles including in-cycle temperature and per-cycle IR measurements. We worked out own Python codes which reproduced the various data plots and machine learning approaches for cycle life prediction using early cycles and more details not presented in the article and the supplementary information. Particularly, we applied regularized ridge, lasso and elastic net linear regression models using features extracted from capacity fade curves, discharge voltage curves, and other data such as internal resistance and cell can temperature. We found that due to the limitation in the quantity and quality of the data from costly and lengthy battery testing a careful hyperparameter tuning may be required and that model features need to be extracted based on the domain knowledge.

크리이프-피로 상호작용하의 균열성장속도 예측에 관한 연구 (A Study on Prediction of Crack growth Rate Under Creep-Fatigue Interaction)

  • 주원식;조석수
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.98-111
    • /
    • 1995
  • High temperature low cycle fatigue shows that cycle-dependent crack growth owing to cyclic plastic deformation occurred simultaneosly with time-dependent crack growth owing to intergranular deformation. Consequently, to estimate crack growth rate uniquely, many to investigators have proposed various kinds of parameters and theories but these could not produce satisfactory results. Therefore the goal of this study is focused on prediction of crack growth rate using predominant damage rule, linear cumulative damage rule and transitional parameter ${\Delta}J_c/{\Delta}J_f$. On the basis of these sinusoidal loading waveform at 600$^{\circ}C$ and 700$^{\circ}C$.

  • PDF

과냉 회로를 갖는 이산화탄소 냉동시스템에 대한 성능 해석 (Performance Analysis for CO2 System with Sub-cooling loop)

  • 김진만;고성규;김무근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.723-728
    • /
    • 2007
  • In order to evaluate the performance of carbon dioxide cycle with a sub-cooling loop. a simulation system was developed to predict the steady state of $CO_2$ trans-critical cycle. Mathematical models are derived to describe the relationships between the system's coefficient of performance and other operating parameters The mathematical models are based entirely on the basic mass and energy conservation law and thermodynamic and transport properties of carbon dioxide A parametric study has been conducted in order to investigate the effect of sub-cooling loop and various operating conditions on the cycle performance. An optimal mass fraction of a refrigerant flowing through sub-cooling cycle existed for the given evaporating temperature, high pressure and air inlet temperature through gas cooler.