• Title/Summary/Keyword: Temperature crack

Search Result 1,338, Processing Time 0.024 seconds

Characteristics of Plasma Sprayed TiO2-NiCr Conductive Heating Roll Coatings (가열 롤에서 플라즈마 TiO2-NiCr 용사피막의 특성)

  • Kang, Tae-Gu;Jin, Min-Seok;Ko, Young-Bong;Kim, Tae-Hyung;Cho, Sang-Hum;Park, Jung-Sik;Kim, Jong-Chul;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.28-34
    • /
    • 2007
  • The heating unit of direct heating method manufactured as the plasma spray coating of $TiO_2/NiCr$ conductive heating material on the surface of heating unit in order to improve the disadvantages of indirect heating method. $TiO_2$ and NiCr (80wt.%Ni-20wt.%Cr) that had the properties of conduction and heating was chosen for the conductive heating material. The compositions of the composite powders were studied $TiO_2-30wt.%NiCr\;and\;TiO_2-10wt.%NiCr$. As the heating temperature was increased, the hardness of heating layer was increased because of the fine microstructure and the decrease of porosity. The adhesion strength was decreased for coarsening and connection of voids in the insulation layer, and the electrical resistivity of heating layer was increased for fine crack formation and growth. In this study, the best efficient sprayed coatings with heating unit was concluded as the plasma sprayed $TiO_2-10wt.%NiCr$ coatings that was heat treated at $300^{\circ}C$.

A Study on the Welding Characteristics of Hastelloy C-276 using a Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 Hastelloy C-276의 용접특성에 관한 연구)

  • Na, Gee-Dae;Yoo, Young-Tae;Shin, Ho-Jun;Oh, Yong-Seok
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.49-59
    • /
    • 2008
  • Hastelloy C-276, corrosion resistant alloy at high temperature, is used in chemical plant and power generation industry. In this study, process parameter of laser welding for welding property in Hastelloy C-276 using a continuous wave Nd:YAG laser was studied. As the result of experiment, laser welding did not show segregation or crack at heat affected zone compared to conventional GTWA welding. The melting zone showed cell dendritic structure along with welding line. In addition, planer front solidification is occurred from welding structure, and it was progressed to cellular solidification. Optimal process parameter for butt welding was 1.2kW and 2.0 m/min for laser power and welding speed, respectively. While heat input, output density, tensile stress, and longitudinal strain was $441.98{\times}103$ J/cm2, $29.553{\times}103$ W/cm2, 768 MPa, and 0.689, respectively. Lap welding of the same material showed greater discrepancy in tensile property during 1 line and 2 line welding. For 1 line welding, tensile stress was about 320 MPa, and 2 line showed slightly larger tensile stress. However, strain was decreased by 20%. From this result, lap welding of the same material, Hastelloy C-276, with 2 line welding is considered to be more effective process than 1 line welding with consideration of mechanical property.

Study on the Fabrication of Ceramic Core using a Gel-casting Process in Aqueous medium(I) : Gelation Behavior of Polydispered Ceramic Slip (수용액 매체에서 젤-케스팅 공정을 이용한 세라믹 코어 제조에 관한 연구(I) : 다성분계 분산 세라믹 슬립의 젤화 거동)

  • Kim, Jae-Won;Kim, Du-Hyeon;Kim, In-Su;Yu, Yeong-Su;Kim, Jae-Cheol;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.137-145
    • /
    • 2001
  • A new process, gelcasting in aqueous medium, to fabricate complex-shaped ceramic core has investigated. The ceramic slurry, mixture of fused silica powder and additives such as zircon and cordierite, was electrosterically stabilizes. The slip was prepared by ball milling of polydispered ceramic suspension with monomer, dimer and dispersant. The rheological behavior of slip was evaluated by viscosity measurement. It was found that the high solid loading of polydispersed ceramic slip, which has low viscosity of 50vol%, is possible to obtained. The viscosity of the slip was significantly dependent upon the amount of polymer dispersant and the formulation of monomer and dimer. The green bodies were fabricated through casting and gelation at room temperature followed by drying at $25^{\circ}C$ for 48hrs under relative humidity of 80~85%. Crack-free green body was successfully fabricated through the above process.

  • PDF

In-site Processing and Mechanical Properties of Ti/TiB Composites (반응생성에 의한 Ti/TiB 복합재료의 제조와 기계적 성질)

  • Jeong, Hui-Won;Lee, Yong-Tae
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.307-314
    • /
    • 1999
  • The effect of manufacturing variables, such as reactant powder$(TiB_2, B_4C)$, sintering temperature, and sintering time has been investigated on the microstructure and the mechanical properties of in-situ processed Ti/TiB composites. The mechanical properties were evaluated by measuring the compressive yield strength. The compressive yield strength of the in-situ processed composites was higher than that of the Ti-6AI-4V. The compressive yield strength of the composite made with TiE, reactant powder was higher than that of $B_4C$, mixed at the same volume fraction of reinforcement. It is because bonding nature between the matrix and the $TiB_2$, reactant powder was more strong than that of the other materials. It was proven by the examining the crack propagation path.

  • PDF

Sol-gel Coating of ZrO2 Film in Aluminium Etch Pit and Anodizing Properties (알루미늄 에치피트에 ZrO2 막의 졸-겔 코팅 및 양극산화 특성)

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.259-265
    • /
    • 2014
  • $ZrO_2$ films were coated on aluminum etching foil by the sol-gel method to apply $ZrO_2$ as a dielectric material in an aluminum(Al) electrolytic capacitor. $ZrO_2$ films annealed above $450^{\circ}C$ appeared to have a tetragonal structure. The withdrawal speed during dip-coating, and the annealing temperature, influenced crack-growth in the films. The $ZrO_2$ films annealed at $500^{\circ}C$ exhibited a dielectric constant of 33 at 1 kHz. Also, uniform $ZrO_2$ tunnels formed in Al etch-pits $1{\mu}m$ in diameter. However, $ZrO_2$ film of 100-200 nm thickness showed the withstanding voltage of 15 V, which was unsuitable for a high-voltage capacitor. In order to improve the withstanding voltage, $ZrO_2$-coated Al etching foils were anodized at 300 V. After being anodized, the $Al_2O_3$ film grew in the directions of both the Al-metal matrix and the $ZrO_2$ film, and the $ZrO_2$-coated Al foil showed a withstanding voltage of 300 V. However, the capacitance of the $ZrO_2$-coated Al foil exhibited only a small increase because the thickness of the $Al_2O_3$ film was 4-5 times thicker than that of $ZrO_2$ film.

Early Shell Crack Detection Technique Using Acoustic Emission Energy Parameter Blast Furnaces (음향방출 에너지 파라미터를 이용한 고로 철피균열의 조기 결함탐지 기술)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Bae, Dong-Myung;Yang, Bo-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

Heat Treatment Process Design of CrMoSC1 Steel by Prediction of Phase Transformation and Thermal Stress Analysis (상변태 예측 및 열응력 해석에 의한 CrMoSC1 강의 열처리 공정 설계)

  • Choi, B.H.;Kwak, S.Y.;Kim, J.T.;Choi, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.247-255
    • /
    • 2005
  • Although heat treatment is a process of great technological importance in order to obtain desired mechanical properties such as hardness, the process was required a tedious and expensive experimentation to specify the process parameters. Consequently, the availability of reliable and efficient numerical simulation program would enable easy specification of process parameters to achieve desired microstructure and mechanical properties without defects like crack and distortion. In present work, the developed numerical simulation program could predict distributions of microstructure and thermal stress in steels under different cooling conditions. The computer program is based on the finite difference method for temperature analysis and microstructural changes and the finite element method for thermal stress analysis. Multi-phase decomposition model was used for description of diffusional austenite decompositions in low alloy steels during cooling after austenitization. The model predicts the progress of ferrite, pearlite, and bainite transformations simultaneously during quenching and estimates the amount of martensite also by using Koistinen and Marburger equation. To verify the developed program, the calculated results are compared with experimental ones of casting product. Based on these results, newly designed heat treatment process is proposed and it was proved to be effective for industry.

Corrosion Behavior of Dental Alloys Cast by Various Casting Methods (치과용 주조합금의 주조방법에 따른 부식거동)

  • Choe Han-Cheol;Ko Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.296-300
    • /
    • 2004
  • The defects of partial denture frameworks are mainly shrinkage porosity, inclusions, micro-crack, particles from investment, and dendritic structure. In order to investigate a good casting condition of partial denture frameworks, the three casting alloys and casting methods were used and detected casting defects were analyzed by using electrochemical methods. Three casting alloys (63Co-27Cr-5.5Mo, 63Ni-16Cr, 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting (Kerr, USA), high frequency induction casting (Jelenko Eagle, USA), vacuum pressure casting (Bego, Germany). The casting temperature was $1,380^{\circ}C$ (63Co-27Cr-5.5Mo and 63Ni-16Cr) and $1,420^{\circ}C$ (63Co-30Cr-5Mo). The casting morphologies were analyzed using FE-SEM and EDX. The corrosion test of the dendritic structure was performed through potentiodynamic method in 0.9% NaCl solutions at $36.5^{\circ}C$ and corrosion surface was observed using SEM. The defects of partial denture frameworks improved in the order of centrifugal casting, high frequency induction casting, and vacuum pressure casting method, especially, pore defects were found at part of clasp in the case of centrifugal casting method. The structure of casting showed dendritic structure for three casting alloys. In the 63Co-27Cr-5.5Mo and 63Co-30Cr-5Mo, $\alpha$-Co and $\varepsilon$-Co phases were identified at matrix and $${\gamma}$-Ni_2$Cr second phase were shown in 63Ni-16Cr. Also, the corrosion resistance of cast structure increased in the order of vacuum pressure casting, high frequency induction casting, and centrifugal casting method.

Fracture Toughness Evaluation of a Solid Propellant Considering Viscoelasticity (점탄성을 고려한 고체추진제의 파괴인성 평가)

  • Ha, Jaeseok;Kim, Jaehoon;Jung, Gyoodong;Park, Jaebeom;Yang, Hoyoung;Seo, Bohwi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.57-62
    • /
    • 2013
  • A crack in a solid propellant increases the area of burning surface, which leads to excessive burning that causes motor failure. Therefore, it is necessary to evaluate fracture toughness of solid propellants. However, it is very difficult to measure fracture toughness of solid propellants because of the nonlinear mechanical behavior. In this study, evaluation of fracture toughness on a solid propellant was carried out under the assumption that the solid propellant is a linear viscoelastic material. Actual displacements from fracture toughness tests using CCT specimens were converted into pseudo-elastic displacements by using stress relaxation characteristics and fracture toughness was evaluated using ASTM E399 standard. Also, effects of test temperature and speed on the fracture toughness were considered.

Study on Polymer-Modified Self-Healing Asphalt (고분자를 이용한 자가치유 아스팔트에 관한 연구)

  • Yang, Dong-Geon;Yoo, Pyeong-Jun;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.134-143
    • /
    • 2014
  • Polymers are introduced to neat asphalt to prepare self-healing asphalt. The polymers are Surlyn, Nylon and polyethyleneterephtalate(PET). Since they are known as having high intermolecular force, they have high processing temperature. Therefore they are hardly introduced into the asphalt as bulk state. So in this study, they are introduced as solutions. Polymer-modified asphalts showed excellent modification effect and also healing effect. 5% polymer added asphalt showed more than 18% increased tensile strength. This tensile strength increment can be explained by polymer's intermolecular forces. Especially Surlyn interacts with asphalt molecules by hydrogen bonding and also with metals in asphalt by ionic bonding. When it comes to healing aspect the healing efficiency of Surlyn increased to 138% based on tensile strength. That of PET increased to 141% based on complex modulus and in case of Nylon it increased to 131% based on impact strength. This tells that in dealing with healing efficiency the important considering factors are not only the intermolecular forces of the polymers but also the interaction between the polymer and asphalt molecules.