• 제목/요약/키워드: Temperature control unit

검색결과 405건 처리시간 0.024초

전기자동차용 조향장치 제어 ECU 구조의 열해석에 관한 실험적 연구 (Experimental Study on Thermal Analysis of Steering Control ECU Structure for Electric Vehicles)

  • 김해지
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.113-119
    • /
    • 2015
  • The technical development of electric vehicles has been actively proceeding because of the reduction of oil resources and need for eco-friendly vehicle technology. In particular, an electronic control unit is an important element in the technology of electric vehicles due to the motor drive system. This paper concerns an experimental study on the thermal analysis of the steering control ECU structure for an electric vehicle. The ECU unit is designed for eight heat sinks for the thermal analysis of the ECU structure. The thermal analysis characteristics of the ECU structure are evaluated by the temperature distribution, heat flow, von Mises stress, total translation, and external surface temperature measurement of the ECU unit.

압력·온도 변화에 따른 초고압 발생기 성능특성 연구 (A Study of the Variation in Intensifier Performance Characteristics Varying with Pressure and Temperature)

  • 김형의;이기천;김재훈
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1249-1255
    • /
    • 2010
  • 초고압 시스템은 유압동력 발생장치, 충격압력 발생장치, 초고압부 오일 보충장치, 기동 및 제어반 등으로 일반적으로 구성된다. 유압동력 발생장치는 초고압 발생기에 유압원을 공급하고, 초고압 발생기에서는 공급되어진 유압원을 이용하여 초고압으로 압력을 증폭한다. 기동 및 제어반에서는 시스템을 운전하기 위한 전기모터, 밸브, 센서 등에 대한 제어 및 관찰을 하기 위해 사용된다. 본 연구에서는 초고압 압력을 발생시키기 위한 제어 방법을 서보밸브를 사용한 유량제어 방식에서 비례 릴리프 밸브를 사용한 압력제어 방법을 사용하여 연구하며, 초고압 압력 발생기의 압력을 가하는 주기와 유압동력 발생장치의 작동유의 온도 변화에 따라 충격압력을 발생시키는 성능이 변화하는 특성을 연구하는 것을 목적으로 한다.

임베디드 시스템 기반의 혈액 투석기 시스템의 개발 (The Development of Hemodialysis System Based on Embedded System)

  • 지정호;이경중;김영호;박광리
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권11호
    • /
    • pp.521-527
    • /
    • 2002
  • The Hemodialysis system is the device for the patients who have suffered from end stage renal failure as the kidney which removes the waste products in a human body. The existing hemodialysis is based on a 8-bit micro-controller and it is not a touch-screen type but a manual type. This paper is focused on hemodialysis system based on high control and expension embedded system. The whole system consists of main control unit and sub control unit(dialysis control unit, blood control unit, monitoring control unit, networking unit). The dialysis control unit, blood control unit, monitoring control unit are processed by 3 microcontrollers and network unit is for monitoring a renal failure patient's condition. For the evaluation of the system performance, the saline was pured into blood unit and then water removal rate, conductivity and temperature of hemodialysis liquid were measured 10 times in an each state suing the UF pump in the fluid unit varing the quantity of saline to 1000cc, 2000cc, 3000cc and 4000cc. As a result, the rates of water removal are 98.6% in condition of 000cc saline, 96.9% in 2000cc, 98.9% in 3000cc and 98.3% in 4000cc. The conductivities of hemodialysis liquid are 99.6% in the first to third condition and 99.7% in the forth condition. The temperatures of hemodialysis liquid are 99.8% in the first to third condition and 99.6% in th forth condition.

Design and Implementation of Green Coastal Lighting System for Entrance to Coastal Pier

  • Jae-Kyung Lee;Jae-Hong Yim
    • 한국항해항만학회지
    • /
    • 제47권2호
    • /
    • pp.85-92
    • /
    • 2023
  • The hardware of an LED lighting control system for coastal lighting at coastal pier entrance consists of a power supply unit, an AVR control unit, a CLCD output unit, an LED control unit, a scenario selection switch unit, and an operation speed display unit. It is made of an 8-channel. The CPU used ATmega128 and the FET was used to control the current signal. To operate the CPU, DC 12V was converted to DC 5V using a regulator 7805. A heat sink was used to remove heat generated in the FET. By connecting the load LED module to the manufactured 8-channel LED lighting control system, the operation was confirmed through various production scenarios. In addition, a control system was designed to show the most suitable color for the atmosphere of the coastal pier according to the input value of temperature and illumination using a fuzzy control system. Computer simulation was then conducted. Results confirmed that fuzzy control did not need to store many data inputs due to characteristics of artificial intelligence and that it could efficiently represent many output values with simple fuzzy rules.

Calculation of Outdoor Air Fraction through Economizer Control Types during Intermediate Season

  • Hong, Goopyo;Hong, Jun;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.13-19
    • /
    • 2016
  • Purpose: In this study, we examined outdoor air fraction using historical data of actual Air Handling Unit (AHU) in the existing building during intermediate season and analyzed optimal outdoor air fraction by control types for economizer. Method: Control types for economizer which was used in analysis are No Economizer(NE), Differential Dry-bulb Temperature(DT), Diffrential Enthalpy(DE), Differential Dry-bulb Temperature+Differential Enthalpy(DTDE), and Differential Enthalpy+Differential Dry-bulb Temperature (DEDT). In addition, the system heating and cooling load were analyzed by calculating the outdoor air fraction through existing AHU operating method and control types for economizer. Result: Optimized outdoor air fraction through control types was the lowest in March and distribution over 50% was shown in May. In case of DE control type, outdoor air fraction was the highest of other control types and the value was average 63% in May. System heating load was shown the lowest value in NE, however, system cooling load was shown 1.7 times higher than DT control type and 5 times higher than DE control type. For system heating load, DT and DTDE is similar during intermediate season. However, system cooling load was shown 3 times higher than DE and DEDT. Accordingly, it was found as the method to save cooling energy most efficiently with DE control considering enthalpy of outdoor air and return air in intermediate season.

주변 온도환경 변화에 따른 가스 인젝터 성능 변화에 대한 연구 (A Study on Performance Change of Gas Injector with Ambient Temperature Environment)

  • 김지윤;양정직;김진호;서지원;임종완
    • 한국가스학회지
    • /
    • 제22권5호
    • /
    • pp.18-23
    • /
    • 2018
  • 본 연구에서는 CNG자동차 인젝터의 외부 환경온도에 따른 인젝터의 분사량을 분석하고자 한다. 특히 냉간 시동시와 같은 조건에서 분사량의 변화를 측정하여 저온환경이 가스인젝터 성능에 미치는 영향을 파악하고자 하며, 가스 인젝터 내부의 스프링 특성을 다르게 하여 실험을 진행 하였다. 실험 장치는 연료 공급부, 유량 측정부, 온도 챔버와 인젝터 제어부로 구성하였다. 실험결과를 통해 저온환경일수록 가스인젝터의 초기 분사량이 증가하였으며, 스프링길이 증가에 따른 니들의 열리는 시간(무효분사시간)이 지연됨을 확인하였다.

슬관절 전치환술 환자의 저체온 관리를 위한 ASPAN의 근거기반 임상실무 가이드라인 적용 효과 (Effects of ASPAN's Evidence-based Clinical Practice Guidelines for Promotion of Hypothermia of Patients with Total Knee Replacement Arthroplasty)

  • 유제복;박현주;채지연;이은주;신유정;고저스틴상욱;김남초
    • 대한간호학회지
    • /
    • 제43권3호
    • /
    • pp.352-360
    • /
    • 2013
  • Purpose: In this study an examination was done of the effects of the American Society of PeriAnesthesia Nurses (ASPAN) Evidence-Based Clinical Practice Guidelines on body temperature, shivering, thermal discomfort, and time to achieve normothermia in patients undergoing total knee replacement arthroplasty (TKRA) under spinal anesthesia. Methods: This study was an experimental study with a randomized controlled trial design. Participants (n=60) were patients who underwent TKRA between December 2011 and March 2012. Experimental group (n=30) received active and passive warming measures as described in the ASPAN's guidelines. Control group (n=30) received traditional care. Body temperature, shivering, thermal discomfort, time to achieve normothermia were measured in both groups at 30 minute intervals. Results: Experimental group had slightly higher body temperature compared to control group (p=.002). Thermal discomfort was higher in the experimental group before surgery but higher in the control group after surgery (p=.034). It decreased after surgery (p=.041) in both groups. Time to achieve normothermia was shorter in the experimental group (p=.010). Conclusion: ASPAN's guidelines provide guidance on measuring patient body temperature at regular intervals and on individualized and differentiated hypothermia management which can be very useful in nursing care, particularly in protecting patient safety and improving quality of nursing.

데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측 (Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House)

  • 최락영;채영현;이세연;박진선;홍세운
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

전력선 통신을 이용한 난방용 솔레노이드밸브 제어에 관한 연구 (A Study on the Control of Solenoid Valve for Heating by using Power Line Communication (PLC))

  • 신관우;김용태;이윤섭
    • 제어로봇시스템학회논문지
    • /
    • 제9권8호
    • /
    • pp.647-650
    • /
    • 2003
  • PLC (Power Line Communication) is the communication method using the existing power line installed in houses and offices to convert and transmit high frequency communication signal from tens of KHz to tens of MHz, and receive the filtered signal using high frequency filter The advantage of PLC is that PLC uses the existing power line installed in houses and offices so it does not require separate power line. Easy and convenient access using electric outlets is another advantage of PLC. However, PLC has some disadvantages such as limited transmission power, high load interference and noise, variable signal attenuation, characteristic of impedance, and selective possibility of frequency property. We designed the boiler temperature control system unit by using the PLC modem. We can avoid unnecessary heating of separate temperature control unit, and save the cost accordingly control stability of the proposed system is proven through the experiment.

철도차량용 LED전조등의 수명시험용 온도제어부의 성능평가 (Performance Assessment of a Temperature Control Unit used in a Lifecycle Testing System for LED Headlamps on Locomotives)

  • 온정근;정기석;정종덕
    • 한국철도학회논문집
    • /
    • 제19권1호
    • /
    • pp.46-53
    • /
    • 2016
  • LED 광원은 기존 광원에 비해 수명이 길고 에너지 효율이 좋은 것으로 알려져 있다. 최근 철도차량의 고속화에 따른 전방시야 확보와 안전적인 운행을 고려하여 LED광원을 이용한 전조등이 증가하고 있다. 그러나 LED광원의 수명시험 데이터를 근거로 한 제품 수명 평가체계는 구동전류, 온도 및 진동 등 수명-스트레스 인자에 따라 다양한 수명특성을 보인다. LED제품은 주로 온도에 의해 예측된 수명에 미치지 못하는 경우가 일반적이므로 온도제어부의 성능평가는 수명시험 이전에 수행되어야 한다. 본 연구는 철도차량용 LED전조등의 수명시험 장치의 온도제어부 시작품을 제작하고 성능시험 결과를 바탕으로 타당성을 검증한다.