• Title/Summary/Keyword: Temperature comfort

Search Result 627, Processing Time 0.03 seconds

A Study on the Evaluation Methods of Indoor Thermal Comfort Index in Building (실내(室內) 온열환경지표(溫熱環境指標)의 평가방법에 관한 연구)

  • Jeong, Chang-Won;Horikoshi, Tetsumi;Yoon, In;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.11-21
    • /
    • 1999
  • This objective of this paper is to investigate the evaluation and indiction of human thermal comfort in building environment. The issue of defining the boundaries of acceptable thermal comfort conditions in buildings and urban may have significant implication for building design and also may have urban design by climate considerations. And then it is to apply the thermal comfort condition to environmental design by using passive methods in Korea. Since 1920. architects have conducted studies to measure thermal comfort in houses under hot and humid conditions, while industrial hygienists have studied the effects of temperature and humidity on the performance of factory workers. Thermal comfort can be influenced by many variables. This paper conducted to review the previous researches and the human heat balance equation, and to analyse in order to reveal the meaning and usage of the thermal comfort index in two traditional essays, Fanger's PMV and Gagge's ET* Their comfort indexes compared with each other. They were based on human heat balance equation and psychological and physiological responses in the laboratory tests. The researchers and the architectural engineers using thermal comfort index shall be careful in decided the use of indexes and be necessary to recognize the value concept of the design criteria for thermal comfort. Therefore, The opinion of the authors is that different comfort standards have to apply for each building and urban with different climatic conditions.

  • PDF

Human Solar Heat Load and Thermal Comfort in an Outdoor Environment (건축외부공간에 있어서 인체의 일사열부하(日射熱負荷) 및 열적(熱的) 쾌적성(快適性)에 관한 실험적 연구)

  • Jeong, Chang-Won;Yoon, In
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.1 no.2
    • /
    • pp.65-74
    • /
    • 1998
  • The purpose of this paper is to investigate the mount of relief of human solar heat load and thermal comfort in outdoor environment in summer, Six different types of sites, T garden and its neighboring area in Japan, were selected as the experiment sites. The experiments were conducted from 22 to 29 August, 1994 to find the relationship between climatic conditions and human responses, Climatic conditions, subjects's thermal sensation and skin temperature were measured. Radiant heat exchange on the human body was estimated on the basis of the measured air and surface temperature and solar radiation. Thermal index Operative Temperature and New Effective Temperature was modified with the effect of the radiant heat exchange. Human thermal comfort and skin temperature is affected by the solar radiation and the sky factor in an outdoor environment. The effect of tree shade was verified on thermal comfort, The mount of relief of human solar heat load is relation to the existence of shade a solar radiation and the sky factor. The urban garden is one of the effective design element in an urban environmental planning.

  • PDF

Development of thermal comfort measurment system to establish emotion and sensibility engineering data base (감성공학 DB 구축을 위한 열적쾌적성 측정 시스템 개발)

  • 한화택;박명규;이성수;천효성;박성준
    • Science of Emotion and Sensibility
    • /
    • v.6 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • The objective of the present study is to develop a thermal comfort measurement system for ergonomic sensibility analysis. The system can measure basic components for thermal comfort, such as skin temperature and clothing temperature/humidity level. A study on the linearization of temperature and humidity sensors has been conducted for more accurate and stable sensor development. The software has been developed for thermal comfort analysis for both clothing thermal environments and indoor environments.

  • PDF

A Field Survey of Thermal Comfort in Office Building with Thermal Environment Standard (온열환경기준에 따른 여름철 사무실의 열쾌적성 평가)

  • Kong, Hyo-Joo;Yun, Geun-Young;Kim, Jeong-Tai
    • KIEAE Journal
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2011
  • This study aims to analyze the field survey of thermal comfort in office building with national thermal environment standard. Internal and external temperatures were measured at ten minute intervals and compared in accordance with the national standard for thermal environment. Sixty two workers filled in the questionnaire survey forms five times a day for 40 days. Field monitoring of offices in Seoul, Korea were conducted from 20 July to 28 August. Result for the comfort temperature was set a $26.30^{\circ}C$. This indicates that the 26 degree is reliable for the Korean standard. Indoor temperature standard can reduce energy use by air-conditioned buildings and the temperature would be offer comfort to occupants.

Research on Thermal Comfort by Increasing Air Conditioner Temperature (에어컨 온도상승에 따른 온열쾌적성 변화에 관한 연구)

  • Kim, Hyung-Chul;Kum, Jong-Soo;KIM, Dong-Gyu;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.2
    • /
    • pp.77-84
    • /
    • 2006
  • This research evaluates thermal comfort by comparing the case of maintain cooing temperature of room with the case of raising it at the point of time that human body begins to adapt. An experiment uses constant temperature & humidity chamber 2 places. Pretesting room make up summer season environment, the testing room control by air-conditioner. In condition that maintain temperature of $33^{\circ}C$. The subjects stay in the pretesting room during the 30 minute for the heat storage amount of the normal summertime. The subjects stay in the testing room under each case (case 1: maintaining $24^{\circ}C$, case 2: maintaining $26^{\circ}C$, case 3: up $1^{\circ}C$ after maintaining $24^{\circ}C$ during 30 minute, case 4: up $1^{\circ}C$ after maintaining $26^{\circ}C$ during 40 minute). 1. Result of comparison of case 1 and case 2 appears that thermal sensitive vote examine from slight cool to cool and thermal comfort examine slight comfort by temperature rise at human body adaptation point of time.2. Test of case 3 and case 4 appear similar value at thermal sensitive vote and thermal comfort.3. Through the case 2 and case 4, continuous thermal comfort maintain at $24^{\circ}C$, if raise $26^{\circ}C$, same thermal comfort maintain after a human body adaptation temperature rising effect bring energy saving.

Experimental Analysis of Thermal Comfort of an Office Space for Ceiling and Floor Supply Air Conditioning Systems (사무실 공간의 냉방시 천장 및 바닥 급기 공조 방식에 따른 열환경 평가 실험)

  • Cho, Yong;Kwon, Hyurk-Seung;Kim, Sung-Hyun;Kim, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.810-816
    • /
    • 2000
  • Thermal comfort plays an important role in modern office buildings. Four major factors affecting thermal comfort are air temperature, velocity, humidity and radiation temperature. Distribution of these thermal factors in indoor space depends largely on the air flow which is related to the method of supplying and extracting air. In this study, an experimental analysis on indoor thermal comfort is conducted to study the difference between a ceiling supply cooling system and a floor supply one. The two cooling systems are applied to an office space during summer season and the distributions of temperature, velocity, radiation temperature and PMV are measured. Results show that the floor supply cooling system is superior in terms of thermal comfort and energy saving. Studies need to be done, however, to reduce the vertical temperature difference of a floor supply air conditioning system.

  • PDF

Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Summer (여름철 사무실내 온열환경 특성 및 쾌적성 평가)

  • Lee, C.H.;Bae, G.N.;Choi, H.C.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.206-217
    • /
    • 1994
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 212 occupants were questioned to evaluate Korean thermal comfort in office building in summer. Thermal and comfort sensations were estimated using PMV(Predicted Mean Vote) and ET* (New Effective Temperature) which are most widely used nowadays. Comparing this experimental result with international standards and that of other research, Korean thermal responses were discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained: TSV=0.461ET*-11.808 and neutral temperature is $25.6^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $24.0{\sim}26.8^{\circ}C$, which is about $1^{\circ}C$ higher than that of ANSI/ASHRAE Standard.

  • PDF

Comfort Control Algorithm Development of Car Air Conditioner using Thermal Comfort Evaluation of Driver : Part I - Air-conditioning Operating Preference of Driver (자동차 에어컨 쾌적제어 알고리즘 개발을 위한 운전자 온열감성 평가 : 제 1 보-운전자의 에어컨 조작 선호도)

  • Kim, Min-Soo;Kim, Dong-Gyu;Lee, Gi-Deok;Kum, Jong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.294-300
    • /
    • 2014
  • In this study, we investigated and evaluated the air conditioning operation of the driver according to the temperature difference between the inside and outside of a car parked outside during the summer. We suggest including a comfort mode to the car air conditioning system to improve the thermal comfort of the driver, in which the comfort can be maintained for a longer time. For the a result of our experiment, in the cases with temperature of above $45^{\circ}C$ inside of the car, the subjects preferred strong air blow with the face and the arms in the direction of the blow. In the cases with temperature of below $40^{\circ}C$ inside of the car, the subjects preferred lower volume of air blow. In the temperature below $28.1^{\circ}C$ inside of the car, the mean temperature on the skin of the driver reached the comfort zone.

The Effect of Pre-warming for Patients under Abdominal Surgery on Body Temperature, Anxiety, Pain, and Thermal Comfort (Forced-air Warming System을 이용한 수술 전 가온이 복부 수술 환자의 체온, 불안, 통증 및 온도 편안감에 미치는 효과)

  • Park, Ok-Bun;Choi, Hee-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.40 no.3
    • /
    • pp.317-325
    • /
    • 2010
  • Purpose: The purpose of this study was to examine the effect of pre-warming on body temperature, anxiety, pain, and thermal comfort. Methods: Forty patients who were scheduled for abdominal surgery were recruited as study participants and were assigned to the experimental or control group. For the experimental group, a forced air warmer was applied for 45-90 min (M=68.25, SD=15.50) before surgery. Body temperature and anxiety were measured before and after the experiment, but pain and thermal comfort were assessed only after the surgery. Hypotheses were tested using t-test and repeated measured ANOVA. Results: The experimental group showed higher body temperature than the control group from right before induction to two hours after surgery. Post-operative anxiety and pain in the experimental group were less than those of the control group. In addition, the score of thermal comfort was significantly higher in the experiment group. Conclusion: Pre-warming is effective in maintaining body temperature, lowering sensitivity to pain and anxiety, and promoting thermal comfort. Therefore, pre-warming can be recommended as a preoperative nursing intervention.

The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort Sensation for Vertical Temperature Differences - (대류 난방시 실내열환경에 관한 연구 -상하온도차에 대한 온열쾌적감-)

  • Kim Dong-Gyu;Kum Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.215-220
    • /
    • 2005
  • Thermal neutrality is not enough to achieve thermal comfort. The temperature level can be the optimal, and still people may complain. This situation is often explained by the problem of local discomfort. Local discomfort can be caused by radiant asymmetry, local air velocities, too warm and too cold floor temperature and vertical temperature difference. This temperature difference may generate thermal discomfort due to different thermal sensation in different body parts. Therefore, thermal comfort can not be correctly evaluated without considering these differences. This study investigates thermal discomfort sensations of different body parts and its effect on overall thermal sensation and comfort in air-heating room. Experimental results of evaluating thermal discomfort at different body parts in an air-heating room showed that thermal sensation on the shoulder was significantly related to the overall thermal sensation and discomfort. Although it is known that cool-head, warm-foot condition is good for comfort living, cool temperature around the head generated discomfort.