• Title/Summary/Keyword: Temperature comfort

Search Result 627, Processing Time 0.025 seconds

A Study on the Indoor Climate Characteristics and Thermal Sensation Vote of the Earthen House in Summer Season (흙집의 하절기 실내 물리적 환경 특성과 온열감에 관한 연구)

  • Chan, Kook;Jeon, Ji-Hyeon;Shin, Yong-Gyu
    • Journal of the Korean housing association
    • /
    • v.17 no.5
    • /
    • pp.9-16
    • /
    • 2006
  • The researches on the environmental friendly buildings have carried out on the materials, environmental property, technical elements and etc., and various buildings with these green materials have built and under construction nowadays and became a new trend of the green building. And recently, new building technique which builds the wall with the soil and wood and very easy to construct (called M Earthen House) was introduced as the green building and rapidly propagated. But the research on the indoor climatic characteristics, the ability to control the environmental comfort and the influence to the human beings of these buildings are not sufficiently identified yet. In this paper, the indoor environmental characteristics and the temperature controlling ability of these buildings in summer season were measured and analysed by the Portable Indoor Air Quality Monitor(BABUC/A, LSI) measuring equipments, ana the subjective test on the thermal environment of the subjects were carried out to evaluate the thermal comfort. The results can be summarized as follows; 1) Compared to the outdoor dry bulb temp.($15.4{\sim}28.7^{\circ}C$), the indoor temp. was $19.5{\sim}26.8^{\circ}C$. It showed the temperature controlling ability of the M earthen house was outstanding. And the indoor relative humidity, compared to the outdoor($45.4{\sim}100%$), was $58.1{\sim}76.4%$, it showed the humidity controlling ability of the M earthen house was also outstanding. 2) The thermal environment was evaluated as 'comfort'(neutral-slightly warm) and the humidity was also evaluated as 'comfort'(neutral-slightly humid). So, the results of the physical and subjective evaluation on the indoor thermal comfort in summer season were 'neutral' and 'comfort' coincidently, it was confirmed that the controlling ability of the indoor temperature and humidity of the M earthen house was very excellent.

Evaluation of Indoor Thermal Environment for Cooling in Apartment House (공동주택의 냉방시 실내온열환경 평가 연구)

  • 김난행;안병욱
    • Journal of the Korean housing association
    • /
    • v.14 no.3
    • /
    • pp.1-8
    • /
    • 2003
  • It is not sufficient to control the indoor thermal environment using only one or two parameters by itself as human response for the control of indoor thermal environment. So a proper environmental thermal index is required for the control of indoor thermal environment effectively. In this study, the physical environment was measured and analysed and the skin temperature of the subjects and their response were investigated to evaluate the optimum thermal comfort range for cooling season in an apartment house. As a result, the optimal temperature was 26.1$^{\circ}C$ and the temperature ranges which more than 80% responded as satisfactory were 24.1~28.$0^{\circ}C$, respectively. As the OT had most significant interrelation with the PMV, it is desirable to use the OT in evaluating the thermal environment during cooling. Also, the comfort range was concluded between OT 25.5~27.3$^{\circ}C$ by appointing the PMV of -0.5~0.5 as the optimum comfort condition. In addition, the Human responses were compared with calculated PMV, OT and MRT and the relationships are suggested in order to utilize to control indoor thermal environment.

The Study on the Thermal Comfort of Rural Housing in Chung-nam area (충남지역 농촌 주거용 건물의 열쾌적성능에 관한 연구)

  • Park, Jae-Sang;Yoo, Jong-Ho;Park, Jae-Wan;Shin, U-Cheul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.202-207
    • /
    • 2011
  • This study has measured indoor temperature and relative humidity and evaluated it for one year by selecting Chungnam's rural areas for improving indoor environment of rural housing in the circumstance that the environment of housing is poor due to deterioration of rural housing. As a result of its evaluation, the indoor temperature difference by household appeared to be more than $13^{\circ}C$, and it was measured that the indoor temperature was mostly low. A difference of more than 40% in case of relative humidity occurred, so the difference of the indoor environment by household was clear. In case of the thermal comfort zone, the number of households that are distributed to more than 50% of a thermal comfort criterion in the winter was only 3 households, rather than the summer.

  • PDF

Diffusion Simulation Using Envi-Met. in Urban Planetary Boundary Layer (Envi-Met.을 이용한 도심 대기경계층 내 확산장 변화 수치 모의)

  • Choi, Hyun-Jeong
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.357-371
    • /
    • 2016
  • Buildings in the city acts as a cause of distorted wind direction, wind speed, causing the stagnation of the air flow. In the recent trend of climate change can not but consider the temperature rise of the urbanization. This study was aimed to analyze the thermal comfort of planetary boundary layer in different artificial constructions areas which has a direct impact on urban climate, and estimating the warming phenomena. Envi-met model was used to consider the urban structure associated with urban growth in order to precisely determine the impact of the building on the city weather condition. The analyzed values of thermal comfort index were temperature, wind speed, horizontal and vertical turbulent diffusivity. In particular, analysis of the PPD(Predicted Percentage of Dissatisfied) represents the human thermal comfort. In this study, by adjusting the arrangement and proportion of the top floor building in the urban it was found that the inflow of the fresh air and cooling can be derived low PPD. Vertical heat flux amount of the city caused by climate change was a factor to form a high potential temperature in the city and the accumulation of cold air does not appear near the surface. Based on this, to make the city effectively respond to climate change may require a long-term restructuring of urban spatial structure and density management.

An Evaluation of Human Thermal Comfort and Improvement of Thermal Environment by Spatial Structure (공간 구조별 열쾌적성 평가와 열환경 개선방안)

  • Lee, Jung-A;Jung, Dae-Young;Chon, Jin-Hyung;Lee, Sang-Moon;Song, Young-Bae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.12-20
    • /
    • 2010
  • The purpose of this study is to evaluate human thermal comfort by spatial structure and to explore solutions to improve the thermal environment of a small urban space. The study site was Korea University campus. Thermal conditions were measured to evaluate the quality of the thermal environment in each type of space within the study site. Micrometeorology measurements, analysis of space characteristics for using fish-eye lens photography, and thermal comfort modeling through the use of collected meteorological data, such as temperature and humidity, were performed. Results showed that the level of thermal comfort for humans differs depending on the types of space within the study site. Thermal comfort is better in open spaces than enclosed in the aspect of radiative mean temperature, Predicted Mean Vote(PMV), and Physiologically Equivalent Temperature(PET). This fact is probably due to shadows or buildings or trees that may block solar radiation. Thus, it is necessary to consider the spatial arrangements of buildings and trees to enhance openness and ventilation in the space. Paving materials and exterior building materials should also be selected to lower the radiant temperature. Given these results, a quantitative evaluation on human thermal comfort could propose a way to plan user comfortable small urban spaces. Study methods used and results provided in the study can promote a better way for urban space planning direction to improve environmental quality.

A Study of Thermal Comfort by Winter Temperature Humidity Change (겨울철 온도 및 습도변화에 따른 온열쾌적감에 관한 연구)

  • Kim, Se-Hwan;Lee, Sung;Kim, Dong-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.803-809
    • /
    • 2007
  • To those who spend most time within a room, comfortable indoor environment is a very critical element to job performance and health. The comfort technology, which is for enhancing comfort in human living, relates with various factors to ensure human activities efficient, comfortable, safe and satisfactory. Experiments were performed in environmental chamber. Experimental conditions were combinations from three temperatures of 18, 22 and 26C, and two relative humidity levels of 45 and 60%. Air-flow was controlled to 0.1m/s through the experiment. Four male and four female university students participated in the experiments. They had normal blood pressure and their body temperature was under $37^{\circ}C$. From the experiments for evaluating thermal sensation to the air-heating conditions, relationships among TSV, CSV, $SET^*$, PMV were analyzed. Results can be summarized as followings; Thermal neutrality $SET^*$ of man and female was $24.8^{\circ}C$. In air-heating condition, $SET^*$ values for thermal comfort zone were $23.0{\sim}26.5^{\circ}C$. These values were higher than the values from ASHRAE.

Evaluation of Thermal Comfort in Ceiling Cooling System (천장복사냉방의 온열쾌적성 평가에 관한 연구)

  • Lee, Ju-Youn
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • The purpose of this study was to clarify the effects of air and ceiling temperatures on a type of ceiling cooling system that involves cool water circulation. The experiment is conducted in summer. The subjects (11 young females) are exposed to the following conditions: combinations of air temperatures $(27^{\circ}C,\;29^{\circ}C,\;31^{\circ}C)$ and ceiling temperature of $(22.7^{\circ}C,\;23.7^{\circ}C,\;24.7^{\circ}C)$ in still air and RH 50%. The following results were obtained; the thermal sensation vote is neutral at a mean skin temperature of $34.5^{\circ}C$. The ceiling temperature affected different parts of the body. For example, the forehead, scapula and abdomen produced different skin temperatures. Thermal comfort vote was rated as comfortable at high temperature environment. The satisfaction from the ceiling temperature was valued comfortable zone in this experiment. Mean skin temperature showing higher thermal neutrality temperature than existing studies for floor and wall radiation cooling results.

The Effect of the Materials of an Outer Wall and the Paved Street on Human Thermal Comfort in a Housing Complex in Pohang City (포항시의 집합 주거공간에 있어서 외장재 및 도로 구성재료가 인체 온열 쾌적성에 미치는 영향)

  • Jeong, Chang-Won;Kim, Kyung-Dae;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.319-327
    • /
    • 2001
  • The objective of this study is to clarify the effect of thermal radiation environments on human thermal comfort, depending on different canyon types and surface materials on the human thermal comfort in a housing complex in Pohang city, Korea. For this purpose, the operative temperature and new effective temperature were calculated based on the modified mean radiant temperature of canyon models variated by the existence of direct radiation existence, surface materials, and the width and length of the street spaces in a housing complex. These indices for the canyon have been calculated from the meteorological data of Pohang city, which include air temperature, relative humidity, air velocity, global solar radiation and cloud. And the monthly averages of these climate factors measured at noon have been used. The results are as follows: (1) It is revealed that the short-wave radiosity reached the human body is affected by direct solar radiation and surface materials, and the long-wave radiosity by canyon types. (2) The existence of direct solar radiation, the kinds of surface materials and canyon types affect operative temperature($OT_n$) and new effective temperature($ET^*{_n}$). (3) The analysis of the human heat balance in the canyon indicates that the influence of radiation on human body is marc likely to be affected by the existence of direct solar radiation on human model.

  • PDF

Evaluation of Korean Thermal Sensation in Office Buildings During the Summer Season (여름철 사무실내 한국인의 온열감 평가)

  • Bae, G.N.;Lee, C.H.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.341-352
    • /
    • 1995
  • In this study, thermal parameters were measured and 213 occupants were also questioned in three office buildings located in Seoul during the summer season. Predicted mean vote-predicted percentage of dissatisfied(PMV-PPD) and standard new effective temperature(SET*) were used for evaluating Korean thermal sensation. The distribution of thermal sensation vote(TSV) and percentage of dissatisfied(PD) is very similar to that of PMV and PPD. By regression analysis, the following regression equation was obtained; TSV=0.339SET*-8.583. In this case, neutral temperature and comfort range are $25.3^{\circ}C$, $23.8{\sim}26.8^{\circ}C$ respectively. Present experimental results obtained from the field study is less sensitive to the temperature change than those obtained from the climate chamber study in Korea. But, thermal sensations are similar to each other near the neutral point. The neutral temperature and comfort range obtained by this experiment are higher than those of ANSI/ASHRAE Standard 55-1974 about $1.4{\sim}1.8^{\circ}C$.

  • PDF

Assessment of the Clothing Wear Comfort for Elderly Women based on Rectal Temperature, Melatonin and Cortisol Analyses (직장온·멜라토닌·코티졸 분석을 통한 노년기 여성의 의복 착용 쾌적성 평가)

  • Bang, Ha Yeon;Kim, Hee Eun
    • Fashion & Textile Research Journal
    • /
    • v.15 no.2
    • /
    • pp.277-285
    • /
    • 2013
  • This study examines the wearing comfort of elderly women through a physiological analysis based on rectal temperature and biochemical analysis with salivary melatonin and cortisol. This study was conducted on 7 elderly women aged 65 or over. Two kinds of clothing ensemble (control and prototype) were used as experimental clothing. The control clothing was a general clothing ensemble and the prototype clothing lowered clothing pressure by adding an extra gap. The experimental schedule included daily living activities with randomly assigned experimental clothing. Rectal temperature was constantly measured every 5 minutes during the experiment and saliva samples for melatonin and cortisol were collected twice per day before and after sleep. The rectal temperature was lower for the prototype than the control throughout the experiment, and its circadian rhythm was prompt and clear in prototype. In addition, melatonin was secreted more but cortisol was secreted less when the subjects wore the prototype clothing. With these results, we assumed that regular circadian rhythm and low level of stress might be caused by wearing prototype clothing that lowered clothing pressure. The results demonstrate the necessity to develop clothing that considers body changes in elderly women.