• Title/Summary/Keyword: Temperature coefficient

Search Result 4,544, Processing Time 0.034 seconds

Acoustic Properties of Rubber Compound for Anechoic Coating

  • Bae, Jong Woo;Kim, Won Ho;Ahn, Byung Hyun
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.195-201
    • /
    • 2018
  • Three kinds of rubber compounds were prepared, and their underwater acoustical properties were investigated for anechoic coating. Dynamic mechanical properties of the rubber compounds were measured using a dynamic mechanical analyzer and extended to 100 kHz using time-temperature superposition. The sound speed, reflection coefficient, and attenuation constant were calculated. Silicone rubber showed the lowest reflection coefficient, and nitrile rubber showed the highest attenuation constant. The acoustic properties of nitrile rubber compounds with various compositions were investigated. The sound speed, reflection coefficient, and transmission coefficient of the nitrile rubber in the frequency range of 200-1000 kHz were measured in a water-filled tank.

Relationship between Phenological Stages and Cumulative Air Temperature in Spring Time at Namsan

  • Min, Byeong-Mee;Yi, Dong-Hoon;Jeong, Sang-Jin
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.143-149
    • /
    • 2007
  • To certify predictability for the times of phenological stages from cumulative air temperature in springtime, the first times of budding, leafing, flower budding, flowering and deflowering for 14 woody plants were monitored and air temperature was measured from 2005 to 2006 at Namsan. Year day index (YDI) and Nuttonson's Index (Tn) were calculated from daily mean air temperature. Of the 14 woody species, mean coefficient of variation was 0.04 in Robinia pseudo-acacia and 0.09 in Alnus hirsuta. However, mean coefficient of variation was 0.30 in Forsythia koreana and Stephanandra incisa and 0.32 in Zanthoxylum schinifolium. Therefore, the times of each phenological stage could be predicted in the former two species but not in latter three species by two indices. Of the five phenological stages, mean coefficient of variation was the smallest at deflowering time and the largest at budding time. In five phenological stages, mean coefficient of variation of YDI was in the range of $0.11{\sim}0.21$ but that of Tn was in the range of $0.15{\sim}0.26$. Therefore, the former was a better index than the latter. Of the species-phenological stage pair, coefficient of variation of YDI was 0.01 in Acer pseudo-sieboldianum - flower budding and below 0.05 in 11 pairs, whereas the YDIs over 0.40 were 4 pairs comprising of Prunus leveilleana - budding (0.51). Coefficient of variation of Tn was 0.01 in A. hirsuta - budding and below 0.05 in 8 pairs. The Tns over 0.40 were 5 pairs comprising of F. koreana - flower budding (0.66).

Experimental measurement of stiffness coefficient of high-temperature graphite pebble fuel elements in helium at high temperatures

  • Minghao Si;Nan Gui;Yanfei Sun;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1679-1686
    • /
    • 2024
  • Graphite material plays an important role in nuclear reactors especially the high-temperature gas-cooled reactors (HTGRs) by its outstanding comprehensive nuclear properties. The structural integrity of graphite pebble fuel elements is the first barrier to core safety under any circumstances. The correct knowledge of the stiffness coefficient of the graphite pebble fuel element inside the reactor's core is significant to ensure the valid design and inherent safety. In this research, a vertical extrusion device was set up to measure the stiffness coefficient of the graphite pebble fuel element by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. The stiffness coefficient equations of graphite pebble fuel elements at different temperatures are given (in a helium atmosphere). The result first provides the data on the high-temperature stiffness coefficient of pebbles in helium gas. The result will be helpful for the engineering safety analysis of pebble-bed nuclear reactors.

Development of Technique to Improve the Formability of the Rear Floor in Series Stamping Process (연속 스탬핑 작업시 리어 플로어 성형성 향상기술 개발)

  • 김동환;이정민;고영호;차해규;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.25-28
    • /
    • 2004
  • A fracture was generated by change of clearance and deterioration of material properties on the sheet metal through temperature. This paper describes the results of a prediction about the temperature of the sheet metal during continuous stamping process, because the temperature increase of the sheet metal has a detrimental effect on formability. To analyze the temperature increase of the sheet metal during continuous stamping process, tensile and friction tests were performed from room temperature to 300$^{\circ}C$ at warm condition in this study. As temperature increase, tensile strength, elongation, strain hardening exponent and anisotropy coefficient for each specimens were decreased. On the other hand, friction coefficients were increased. From the FE-simulation results, temperature upward tendency was identified on dies and sheet metal. These observations are rationalized on the basis of the material properties, friction coefficient vs. temperature relationship for the sheet.

  • PDF

A Study on Temperature Compensation of Silicon Piezoresistive Pressure Sensor (실리콘 저항형 압력센서의 온도 보상에 관한 연구)

  • 최시영;박상준;김우정;정광화;김국진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.563-570
    • /
    • 1990
  • A silicon pressure sensor made of a full bridge of diffused resistors was designed and fabricated using semiconductor integrated circuit process. Thin diaphragms with 30\ulcorner thickness were obtained using anisotropic wet chemical etching technique. Our device showed strong temperature dependence. Compensation networks are used to compensate for the temperature dependence of the pressure sensor. The bridge supply voltage having positive temperature coefficient by compensation networks was utilized against the negative temperature coefficient of bridge output voltage. The sensitivity fluctuation of pressure sensor before temperature compensation was -1700 ppm/\ulcorner, while it reduced to -710ppm\ulcorner with temperature compensation. Our result shows that the we could develop accurate and reliable pressure sensor over a wide temperature range(-20\ulcorner~50\ulcorner).

  • PDF

Measuring Convective Heat Transfer Coefficient of Nanofluids Considering Effect of Film Temperature Change over Heated Fine Wire (막온도 변화를 고려한 가는 열선주위 나노유체의 대류열전달계수 측정 실험)

  • Lee, Shinpyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.725-732
    • /
    • 2013
  • This study examined the convective heat transfer characteristics of nanofluids flowing over a heated fine wire. Convective heat transfer coefficients were measured for four different nano-engine-oil samples under three different temperature boundary conditions, i.e., both or either variation of wire and fluid temperature and constant film temperature. Experimental investigations that the increase in the convective heat transfer coefficients of nanofluids in the internal pipe flow often exceeded the increase in thermal conductivity were recently published; however, the current study did not confirm these results. Analyzing the behavior of the convective heat transfer coefficient under various temperature conditions was a useful tool to explain the relation between the thermal conductivity and the boundary layer thickness of nanofluids.

Influence of High Temperature Deformation Process Variables on the Microstructure and Thermo-physical Properties of a Ni-Fe-Co Alloy (Fe-Ni-Co 합금의 고온 변형 공정 변수와 미세조직 및 열물리적 특성의 상관 관계)

  • Yoon, D.H.;Jung, J.E.;Chang, Y.W.;Lee, J.H.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2012
  • High temperature deformation behavior of a $Ni_{30}Fe_{53}Co_{17}$ alloy, with its extraordinary low coefficient of thermal expansion less than $10{\times}10^{-6}K^{-1}$ at temperatures ranging from room temperature to 673K, was investigated by conducting a series of compression tests. From an empirical processing map, the appropriate working temperature-strain rate combination for optimum forming was deduced to be in the ~1373K, $10^{-2}s^{-1}$ region. This region has a relatively high power dissipation efficiency, greater than 0.36. Furthermore, open die forging of a 100mm diameter billets was performed to confirm the variation of thermo-physical properties in relation to microstructure. The coefficient of thermal expansion was found to increase considerably with increasing the open die forging temperature and decreasing the cooling rate, which in turn provides a drastic increase in the average grain size.

Analyses and improvement of fuel temperature coefficient of rock-like oxide fuel in LWRs from neutronic aspect

  • Shelley, Afroza
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1156-1163
    • /
    • 2020
  • Fuel temperature coefficient (FTC) of PuO2+ZrO2 (ROX) fueled LWR cell is analyzed neutronically with reactor- and weapons-grade plutonium fuels in comparison with a U-free PuO2+ThO2 (TOX), and a conventional MOX fuel cells. The FTC value of a ROX fueled LWR is smaller compared to a TOX or a MOX fueled LWRs and becomes extremely positive especially, at EOL. This is because when fuel temperature is increased, thermal neutron spectrum is shifted to harder, which is extreme at EOL in ROX fuel than that in TOX and MOX fuels. Consequently at EOL, 239Pu and 241Pu contributes to positive fuel temperature reactivity (FTR) in ROX fuel, while they have negative contribution in TOX and MOX fuels. The FTC problem of ROX fuel is mitigated by additive ThO2, UO2 or Er2O3. In ROX-additive fuel, the atomic density of fissile Pu becomes more than additive free ROX fuel especially at EOL, which is the main cause to improve the FTC problem. The density of fissile Pu is more effective to decrease the thermal spectrum shifts with increase the fuel temperature than additive ThO2, UO2 or Er2O3 in ROX fuel.

A Study on Electric Safety Control Device for Prevention of Over Current and Short Circuit Faults (과전류 및 단락사고 방지용 전기안전 제어장치에 관한 연구)

  • Jo, Si-Hwan;Kwak, Dong-Kurl;Jung, Do-Young;Shim, Jae-Sun;Kim, Jung-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2100-2101
    • /
    • 2008
  • This paper is studied on a protective control system for electrical fire and electrical faults due to over current or electric short circuit faults by using electrical thermal characteristics of PTC (Positive Temperature Coefficient) thermistor and current response characteristics of high sensitive reed switch. The PTC thermistor has characteristic of positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with BaTiO3_Ceramics of positive temperature coefficient. Also PTC thermistor shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point, and reed switch, which is used for electrical fault current sensing devices, have a excellent characteristic of response velocity in degree of ${\mu}s{\sim}ms$ that sensing magnetic flux in proportion to dimension of line current. This paper is proposed on a protective control system use PTC thermistor and reed switch for sensor which is protected from electrical fire due to overload faults or electric short circuit faults. Some experimental results of the proposed electric safety control device are confirmed to the validity of the analytical results.

  • PDF

Microwave Dielectric Properties of Low Temperature Co-fired Ceramics with Glass Frit and TiO2 Additives (Glass Frit 및 TiO2 첨가에 따른 LTCC용 마이크로파 유전체의 유전 특성)

  • 윤중락;이석원;이헌용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.942-946
    • /
    • 2004
  • The crystalline and dielectric properties on Al$_2$O$_3$ filled glass frit (CaO-Al$_2$O$_3$-SiO$_2$-MgO-B$_2$O$_3$) with admixtures of TiO$_2$ have been investigated. The dielectric constant value of 7.5 ∼ 7.8, qualify factor value of 700 were obtained for glass frit : Al$_2$O$_3$(50 : 50 wt%) ceramics. Addition of TiO$_2$ less than 5 wt% slightly increased the dielectric constant from 7.8 to 8.8 due to higher dielectric constant of TiO$_2$. With increasing the amount of TiO$_2$ up to 5 wt%, the temperature coefficient of dielectric properties was improved. When the TiO$_2$ 5 wt% were added, dielectric properties were dielectric constant 8.8, quality factor 840 and the temperature coefficient of dielectric 45 ppm/$^{\circ}C$ at a sintering temperature 920$^{\circ}C$.